Homogeneous and rank bases in spaces of metric configurations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 344-360 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two families of sets of metric configurations are considered. The conditions are established under which sets from these families are bases for a special linear vector space. It is shown that the transition from the representation of a metric configuration in the trivial basis to its representation in any of the considered bases and back can be effectively calculated. It is shown that the nonnegativity of the decomposition of a metric configuration in the considered bases is a sufficient condition for the semi-metric axioms to hold for this configuration, while the nonnegativity of the decomposition in a rank basis is a necessary and sufficient condition for the metric configuration to have a given rank. The transition coefficients and decomposition components are interpreted in the case of homogeneous bases. Sets from the considered families are indicated that characterize largest-volume cones of metric configurations.
@article{ZVMMF_2006_46_2_a13,
     author = {A. I. Maǐsuradze},
     title = {Homogeneous and rank bases in spaces of metric configurations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {344--360},
     year = {2006},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a13/}
}
TY  - JOUR
AU  - A. I. Maǐsuradze
TI  - Homogeneous and rank bases in spaces of metric configurations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 344
EP  - 360
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a13/
LA  - ru
ID  - ZVMMF_2006_46_2_a13
ER  - 
%0 Journal Article
%A A. I. Maǐsuradze
%T Homogeneous and rank bases in spaces of metric configurations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 344-360
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a13/
%G ru
%F ZVMMF_2006_46_2_a13
A. I. Maǐsuradze. Homogeneous and rank bases in spaces of metric configurations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 344-360. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a13/

[1] Voronin Yu. A., Nachala teorii skhodstva, Nauka, Novosibirsk, 1991 | MR | Zbl

[2] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Ch. I”, Kibernetika, 1977, no. 4, 5–17

[3] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Ch. II”, Kibernetika, 1977, no. 6, 21–27 | Zbl

[4] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Ch. III”, Kibernetika, 1978, no. 2, 35–43 | Zbl

[5] Zhuravlev Yu. I., Rudakov K. V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Probl. prikl. matem. i informatiki, Nauka, M., 1987, 187–198 | MR

[6] Maisuradze A. I., “Ob optimalnykh razlozheniyakh konechnykh metricheskikh konfiguratsii v zadachakh raspoznavaniya obrazov”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1697–1707 | MR

[7] Deza M. M., Loran M., Geometriya razrezov i metrik, MTsNMO, M., 2001

[8] De Leeuw J., Heiser W., “Theory of multidimensional scaling”, Handbook Statistics, 2, Elsevier Science Publs., Amsterdam, 1982, 285–316 | MR

[9] Deivison M., Mnogomernoe shkalirovanie, Finansy i statistika, M., 1988 | MR

[10] Deza M., Dutour M., Data mining for cones of metrics, quasi-metrics. hemi-metrics, and super-metrics, ENS, Paris, 2002

[11] Pichet B., “The role played by $L_1$ in data analysis”, Statistical Data Analysis Based on the $L_1$-Norm and Related Methods, Elsevier Science Publ., Amsterdam, 1987, 185–193

[12] Schoenberg I. J., “On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space”, Ann. Math., 38 (1937), 787–793 | DOI | MR

[13] Avis D., Deza M., “The cut cone, $L_1$ embeddability, complexity and multicommodity flows”, Networks, 21 (1991), 595–617 | DOI | MR | Zbl

[14] Bandelt H.-J., Dress A. W. M., “A canonical decomposition theory for metrics on a finite set”, Advances Math., 92 (1992), 47–105 | DOI | MR | Zbl

[15] Maisuradze A. I., “Ob optimalnom razlozhenii po odnoi sisteme metricheskikh konfiguratsii”, Iskusstvennyi intellekt, 2004, no. 2, 129–133

[16] Maisuradze A. I., “Ob ispolzovanii netrivialnykh bazisov prostranstv metricheskikh konfiguratsii v zadachakh raspoznavaniya”, Intellektualizatsiya obrabotki informatsii, tezisy dokl. Mezhdunar. nauchn. konf., Krymskii nauchn. tsentr HAH Ukrainy, Tavricheskii nats. un-t, Simferopol, 2002, 58–60

[17] Blumenthal L. M., Theory and applications of distance geometry, Sec. ed., Chelsea, New York, 1970 | MR | Zbl

[18] Wells J. H., Williams L. R., Embeddings and extensions in analysis, Springer, Berlin, 1975 | MR | Zbl