@article{ZVMMF_2006_46_2_a13,
author = {A. I. Maǐsuradze},
title = {Homogeneous and rank bases in spaces of metric configurations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {344--360},
year = {2006},
volume = {46},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a13/}
}
A. I. Maǐsuradze. Homogeneous and rank bases in spaces of metric configurations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 344-360. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a13/
[1] Voronin Yu. A., Nachala teorii skhodstva, Nauka, Novosibirsk, 1991 | MR | Zbl
[2] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Ch. I”, Kibernetika, 1977, no. 4, 5–17
[3] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Ch. II”, Kibernetika, 1977, no. 6, 21–27 | Zbl
[4] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov. Ch. III”, Kibernetika, 1978, no. 2, 35–43 | Zbl
[5] Zhuravlev Yu. I., Rudakov K. V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Probl. prikl. matem. i informatiki, Nauka, M., 1987, 187–198 | MR
[6] Maisuradze A. I., “Ob optimalnykh razlozheniyakh konechnykh metricheskikh konfiguratsii v zadachakh raspoznavaniya obrazov”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1697–1707 | MR
[7] Deza M. M., Loran M., Geometriya razrezov i metrik, MTsNMO, M., 2001
[8] De Leeuw J., Heiser W., “Theory of multidimensional scaling”, Handbook Statistics, 2, Elsevier Science Publs., Amsterdam, 1982, 285–316 | MR
[9] Deivison M., Mnogomernoe shkalirovanie, Finansy i statistika, M., 1988 | MR
[10] Deza M., Dutour M., Data mining for cones of metrics, quasi-metrics. hemi-metrics, and super-metrics, ENS, Paris, 2002
[11] Pichet B., “The role played by $L_1$ in data analysis”, Statistical Data Analysis Based on the $L_1$-Norm and Related Methods, Elsevier Science Publ., Amsterdam, 1987, 185–193
[12] Schoenberg I. J., “On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space”, Ann. Math., 38 (1937), 787–793 | DOI | MR
[13] Avis D., Deza M., “The cut cone, $L_1$ embeddability, complexity and multicommodity flows”, Networks, 21 (1991), 595–617 | DOI | MR | Zbl
[14] Bandelt H.-J., Dress A. W. M., “A canonical decomposition theory for metrics on a finite set”, Advances Math., 92 (1992), 47–105 | DOI | MR | Zbl
[15] Maisuradze A. I., “Ob optimalnom razlozhenii po odnoi sisteme metricheskikh konfiguratsii”, Iskusstvennyi intellekt, 2004, no. 2, 129–133
[16] Maisuradze A. I., “Ob ispolzovanii netrivialnykh bazisov prostranstv metricheskikh konfiguratsii v zadachakh raspoznavaniya”, Intellektualizatsiya obrabotki informatsii, tezisy dokl. Mezhdunar. nauchn. konf., Krymskii nauchn. tsentr HAH Ukrainy, Tavricheskii nats. un-t, Simferopol, 2002, 58–60
[17] Blumenthal L. M., Theory and applications of distance geometry, Sec. ed., Chelsea, New York, 1970 | MR | Zbl
[18] Wells J. H., Williams L. R., Embeddings and extensions in analysis, Springer, Berlin, 1975 | MR | Zbl