Solution to the Boltzmann kinetic equation for high-speed flows
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 329-343 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Boltzmann kinetic equation is solved by a finite-difference method on a fixed coordinate-velocity grid. The projection method is applied that was developed previously by the author for evaluating the Boltzmann collision integral. The method ensures that the mass, momentum, and energy conservation laws are strictly satisfied and that the collision integral vanishes in thermodynamic equilibrium. The last property prevents the emergence of the numerical error when the collision integral of the principal part of the solution is evaluated outside Knudsen layers or shock waves, which considerably improves the accuracy and efficiency of the method. The differential part is approximated by a second-order accurate explicit conservative scheme. The resulting system of difference equations is solved by applying symmetric splitting into collision relaxation and free molecular flow. The steady-state solution is found by the relaxation method.
@article{ZVMMF_2006_46_2_a12,
     author = {F. G. Cheremisin},
     title = {Solution to the {Boltzmann} kinetic equation for high-speed flows},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {329--343},
     year = {2006},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a12/}
}
TY  - JOUR
AU  - F. G. Cheremisin
TI  - Solution to the Boltzmann kinetic equation for high-speed flows
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 329
EP  - 343
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a12/
LA  - ru
ID  - ZVMMF_2006_46_2_a12
ER  - 
%0 Journal Article
%A F. G. Cheremisin
%T Solution to the Boltzmann kinetic equation for high-speed flows
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 329-343
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a12/
%G ru
%F ZVMMF_2006_46_2_a12
F. G. Cheremisin. Solution to the Boltzmann kinetic equation for high-speed flows. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 329-343. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a12/

[1] Cheremisin F. G., “Konservativnyi metod vychisleniya integrala stolknovenii Boltsmana”, Dokl. RAN, 357:1 (1997), 53–56 | MR

[2] Cheremisin F. G., “Reshenie uravneniya Boltsmana pri perekhode k gidrodinamicheskomu rezhimu techeniya”, Dokl. RAN, 373:4 (2000), 483–486 | MR

[3] Tcheremissine F. G., “Conservative evaluation of boltzmann collision integral in discrete ordinates approximation”, Comput. Math. Applic., 35:1/2 (1998), 215–221 | DOI | MR | Zbl

[4] Popov S. P., Cheremisin F. G., “Konservativnyi metod resheniya uravneniya Boltsmana dlya tsentralno-simmetrichnykh potentsialov vzaimodeistviya”, Zh. vychisl. matem. i matem. fiz., 39:1 (1999), 163–176 | MR | Zbl

[5] Popov S. P., Cheremisin F. G., “Primer sovmestnogo chislennogo resheniya uravnenii Boltsmana i Nave–Stoksa”, Zh. vychisl. matem. i matem. fiz., 41:3 (2001), 489–500 | MR | Zbl

[6] Popov S. P., Cheremisin F. G., “Obtekanie sverkhzvukovym potokom razrezhennogo gaza reshetki ploskikh poperechnykh plastin”, Izv. RAN. Mekhan. zhidkosti i gaza, 2002, no. 3, 167–176

[7] Popov S. P., Cheremisin F. G., “Dinamika vzaimodeistviya udarnoi volny s reshetkoi v razrezhennom gaze”, Aerodinamika i gazovaya dinamika, 2003, no. 3, 31–38

[8] Popov S. P., Tcheremissine F. G., “A method of joint solution of the boltzmann and Navier–Stokes equations”, Rarefied Gas Dynamics, 24-th Internat. Symp. on Rarefied Gas Dynamics, AIP Conf. Proc., 762, Melville, N.Y., 2005, 82–87

[9] Tcheremissine F., “Direct numerical solution of the Boltzmann equation”, Rarefied Gas Dynamics, 24-th Internat. Symp. Rarefied Gas Dynamics, AIP Conf. Proc., 762, Melville, N.Y., 2005, 667–685

[10] Cheremisin F. G., “Reshenie kineticheskogo uravneniya Vang Chang–Ulenbeka”, Dokl. RAN, 387:4 (2002), 487–490

[11] Aristov V. V., Cheremisin F. G., Pryamoe chislennoe reshenie kineticheskogo uravneniya Boltsmana, VTs RAN, M., 1992 | MR

[12] Patterson G. N., Molekulyarnoe techenie gazov, Fizmatlit, M., 1960

[13] Rogier F., Schnider J., “A direct method for solving the Boltzmann equation”, Transport Theory and Stat. Phys., 23:1–3 (1994) | MR | Zbl

[14] Korobov H. M., Trigonometricheskie summy i ikh prilozheniya, Nauka, M., 1989 | MR | Zbl

[15] Chepmen S., Kauling T., Matematicheskaya teoriya neodnorodnykh gazov, Izd-vo inostr. lit., M., 1960 | MR

[16] Fertsiger Dzh., Kaper G., Matematicheskaya teoriya protsessov perenosa v gazakh, Mir, M., 1976

[17] Girshfelder Dzh., Kertiss Ch., Berd R., Molekulyarnaya teoriya gazov i zhidkostei, Izd-vo inostr. lit., M., 1961

[18] Boris J. P., Book D. L., “Flux-corrected transport. I: SHASTA, a fluid transport algorithm that works”, J. Comput. Phys., 11:1 (1973), 38–69 | DOI | Zbl

[19] Strang G., “On the construction and comparison of difference schemes”, SIAM J. Numer. Analys., 5 (1968), 506–517 | DOI | MR | Zbl