Leveling a capillary ridge generated by substrate geometry
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 318-328 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formation of capillary ridges is typical of thin viscous films flowing over a topographical feature. This process is studied by using a two-dimensional model describing the slow motion of a thin viscous nonisothermal liquid film flowing over complex topography. The model is based on the Navier–Stokes equations in the Oberbeck–Boussinesq approximation. The density, surface tension, and viscosity of the liquid are linear functions of temperature. For a nonisothermal flow over a planar substrate with a local heater, the influence of the heater on the free surface is analyzed numerically depending on the buoyancy effect, Marangoni stresses, and variable viscosity. The analysis shows that the film can create its own ridges or valleys depending on the heater and the dominating liquid properties. It is shown that the capillary ridges generated by the substrate features can be optimally leveled by using various types of heaters consistent with the dominating liquid properties. Numerical results for model problems are presented.
@article{ZVMMF_2006_46_2_a11,
     author = {A. S. Ovcharova},
     title = {Leveling a~capillary ridge generated by substrate geometry},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {318--328},
     year = {2006},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a11/}
}
TY  - JOUR
AU  - A. S. Ovcharova
TI  - Leveling a capillary ridge generated by substrate geometry
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 318
EP  - 328
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a11/
LA  - ru
ID  - ZVMMF_2006_46_2_a11
ER  - 
%0 Journal Article
%A A. S. Ovcharova
%T Leveling a capillary ridge generated by substrate geometry
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 318-328
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a11/
%G ru
%F ZVMMF_2006_46_2_a11
A. S. Ovcharova. Leveling a capillary ridge generated by substrate geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 318-328. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a11/

[1] Kalliadasis S., Bielarz C., Homsy G. M., “Steady free-surface thin film flows over topography”, J. Phys. Fluids, 12:8 (2000), 1889–1898 | DOI | MR

[2] Mazouchi A., Homsy G. M., “Free surface Stokes flow over toporgaphy”, J. Phys. Fluids, 13:10 (2001), 2751–2761 | DOI

[3] Kabova Yu. O., Kuznetsov V. V., “Stekanie neizotermicheskogo tonkogo sloya zhidkosti s nepostoyannoi vyazkostyu”, Zh. prikl. mekhan. i tekhn. fiz., 43:6 (2002), 134–141 | MR | Zbl

[4] Gramlich C. M., Kalliadasis S., Homsy G. M., Messer C., “Optimal leveling of flow over one-dimensional topography by Marangoni stresses”, J. Phys. Fluids, 14:6 (2002), 1841–1850 | DOI

[5] D. Jim, Jr. Rachford H. H., “On the numerical solution of heat conduction problems in two and three space variables”, Trans. Amer. Math. Soc., 82:2 (1956), 421–439 | DOI | MR | Zbl

[6] Yanenko H. H., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967

[7] Ovcharova A. C., “Metod rascheta statsionarnykh techenii vyazkoi zhidkosti so svobodnoi granitsei v peremennykh vikhr – funktsiya toka”, Zh. prikl. mekhan. i tekhn. fiz., 39:2 (1998), 59–68 | MR | Zbl

[8] Ostapenko V. V., “Metod teoreticheskoi otsenki disbalansov raznostnykh skhem na udarnoi volne”, Dokl. AN SSSR, 295:2 (1987), 292–297 | MR

[9] Ostapenko V. V., “O postroenii raznostnykh skhem povyshennoi tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1857–1874 | MR | Zbl

[10] Kabov O. A., Legros J. C., Marchuk I. V., Scheid B., “Deformation of free surface in amoving locally-heated thin liquid layer”, J. Fluid Dyn., 36:3 (2001), 521–528 | DOI | Zbl

[11] Deere M. M. J., Baret J.-Ch., “Gravity-driven flows of viscous liquids over two-dimensional topographies”, J. Fluid Mech., 487 (2003), 147–166 | DOI