Quasi-steady-state particle distributions for an equation of the Landau–Fokker–Planck type with sources
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 307-317 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The formation of nonequilibrium particle distributions for the power-law interaction potentials $U=\alpha/r^\beta$, where $1\le\beta<4$, is considered. The analytical and numerical studies are based on a one-dimensional (in the velocity space) kinetic equation of the Landau–Fokker–Planck type with energy (particle) sources (sinks) localized in the high-energy range. Fully conservative finite-difference schemes are used for numerical modeling. The resulting asymptotic estimates are confirmed by numerical computations. The results can be used to predict the behavior of intrinsic and extrinsic semiconductors influenced by particle fluxes or electromagnetic radiation.
@article{ZVMMF_2006_46_2_a10,
     author = {V. I. Karas' and I. F. Potapenko},
     title = {Quasi-steady-state particle distributions for an equation of the {Landau{\textendash}Fokker{\textendash}Planck} type with sources},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {307--317},
     year = {2006},
     volume = {46},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a10/}
}
TY  - JOUR
AU  - V. I. Karas'
AU  - I. F. Potapenko
TI  - Quasi-steady-state particle distributions for an equation of the Landau–Fokker–Planck type with sources
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 307
EP  - 317
VL  - 46
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a10/
LA  - ru
ID  - ZVMMF_2006_46_2_a10
ER  - 
%0 Journal Article
%A V. I. Karas'
%A I. F. Potapenko
%T Quasi-steady-state particle distributions for an equation of the Landau–Fokker–Planck type with sources
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 307-317
%V 46
%N 2
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a10/
%G ru
%F ZVMMF_2006_46_2_a10
V. I. Karas'; I. F. Potapenko. Quasi-steady-state particle distributions for an equation of the Landau–Fokker–Planck type with sources. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 307-317. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a10/

[1] Kalashnikov H. P., Remizovich B. C., Ryazanov M. I., Stolknoveniya bystrykh zaryazhennykh chastits v tverdykh telakh, Atomizdat, M., 1980

[2] Karas V. I., Moiseev S. S., Novikov V. E., “Mekhanizm obrazovaniya “bystrykh elektronov” emissii iz metalla, indutsirovannoi lazerom”, Pisma v ZhETF, 21:9 (1975), 525–528

[3] Karas V. I., Moiseev S. S., Novikov V. E., “Neravnovesnye statsionarnye raspredeleniya chastits v tverdotelnoi plazme”, Zh. eksperim. i teor. fiz., 71:4(10) (1976), 1421–1433

[4] Batrakin E. H., Zalyubovskii I. I., Karas V. I. i dr., “Issledovanie vtorichnoi emissii iz tonkikh plenok Al, Cu, Be, indutsirovannoi puchkom protonov 1 MeV”, Zh. eksperim. i teor. fiz., 89:3(9) (1985), 1098–1100

[5] Zhurenko V. P., Kononenko S. I., Karas V. I. i dr., “Dissipatsiya energii bystroi zaryazhennoi chastitsei v tverdotelnoi plazme”, Fiz. plazmy, 29:2 (2003), 1–7

[6] Rothard H., Caraby C., Cassimi A. et al., “Target-thickness-dependent electron emission from carbon foils bombarded with swift highly charged heavy ions”, Phys. Rev. A, 51:4 (1995), 3066–3078 | DOI

[7] Brusilovskii B. A., Kineticheskaya ionno-elektronnaya emissiya, Energoatomizdat, M., 1990

[8] Bobylev A. B., Potapenko I. F., Chuyanov V. A., “Kineticheskie uravneniya tipa Landau kak model uravneniya Boltsmana i polnostyu konservativnye raznostnye skhemy”, Zh. vychisl. matem. i matem. fiz., 20:4 (1980), 993–1004 | MR | Zbl

[9] Potapenko I. F., Bobylev A. V., de Azevedo C. A., de Assis A. S., “Relaxation of the distribution function tails for gases with power-law interaction potentials”, Phys. Rev. E, 56 (1997), 7159–7165 | DOI

[10] Kononenko S. I., Balebanov V. M., Zhurenko V. P. i dr., “Neravnovesnye funktsii raspredeleniya elektronov v plazme poluprovodnika, obluchaemogo bystrymi ionami”, Fiz. plazmy, 30 (2004), 687–704

[11] Potapenko I. F., de Azevedo C. A., “The completely conservative difference schemes for the nonlinear Landau–Fokker–Planck equation”, J. Comput. and Appl. Math., 103 (1999), 115–123 | DOI | MR | Zbl

[12] Gred G., “Asimptoticheskaya teoriya uravneniya Boltsmana”, Nekotorye vopr. kinetich. teorii gazov, Mir, M., 1965, 7–128

[13] Landau L. D., Lifshits E. M., Mehanics, Pergamon Press, Oxford, 1975

[14] Landau L. D., “Kineticheskoe uravnenie v sluchae kulonovskogo vzaimodeistviya”, Zh. eksperim. i teor. fiz., 7 (1937), 203–210