An implicit function theorem without a priori assumptions about normality
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 205-215
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The equation $F(x,\sigma)=0$, $x\in K$, in which $\sigma$ is a parameter and $x$ is an unknown taking values in a given convex cone in a Banach space $X$, is considered. This equation is examined in a neighborhood of a given solution $(x^*,\sigma^*)$ for which the Robinson regularity condition may be violated. Under the assumption that the 2-regularity condition (defined in the paper), which is much weaker than the Robinson regularity condition, is satisfied, an implicit function theorem is obtained for this equation. This result is a generalization of the known implicit function theorems even for the case when the cone $K$ coincides with the entire space $X$.
            
            
            
          
        
      @article{ZVMMF_2006_46_2_a1,
     author = {A. V. Arutyunov},
     title = {An implicit function theorem without a~priori assumptions about normality},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. V. Arutyunov TI - An implicit function theorem without a priori assumptions about normality JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 205 EP - 215 VL - 46 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a1/ LA - ru ID - ZVMMF_2006_46_2_a1 ER -
A. V. Arutyunov. An implicit function theorem without a priori assumptions about normality. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a1/
