An implicit function theorem without a priori assumptions about normality
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 205-215

Voir la notice de l'article provenant de la source Math-Net.Ru

The equation $F(x,\sigma)=0$, $x\in K$, in which $\sigma$ is a parameter and $x$ is an unknown taking values in a given convex cone in a Banach space $X$, is considered. This equation is examined in a neighborhood of a given solution $(x^*,\sigma^*)$ for which the Robinson regularity condition may be violated. Under the assumption that the 2-regularity condition (defined in the paper), which is much weaker than the Robinson regularity condition, is satisfied, an implicit function theorem is obtained for this equation. This result is a generalization of the known implicit function theorems even for the case when the cone $K$ coincides with the entire space $X$.
@article{ZVMMF_2006_46_2_a1,
     author = {A. V. Arutyunov},
     title = {An implicit function theorem without a~priori assumptions about normality},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {46},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a1/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - An implicit function theorem without a priori assumptions about normality
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 205
EP  - 215
VL  - 46
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a1/
LA  - ru
ID  - ZVMMF_2006_46_2_a1
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T An implicit function theorem without a priori assumptions about normality
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 205-215
%V 46
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a1/
%G ru
%F ZVMMF_2006_46_2_a1
A. V. Arutyunov. An implicit function theorem without a priori assumptions about normality. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_2_a1/