Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 95-101 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Theorems on the localization of exact solutions are proved for a quasilinear mathematical model describing quasi-periodic processes. Based on these theorems, constructive algorithms are proposed for calculating quasi-periodic solutions with guaranteed accuracy. Quasi-periodic motions play an important role in engineering and physics, where they often represent determining states. Quasi-periodic motions can be found in many ecological, biological, and economic processes.
@article{ZVMMF_2006_46_1_a9,
     author = {Kh. I. Botashev},
     title = {Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {95--101},
     year = {2006},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a9/}
}
TY  - JOUR
AU  - Kh. I. Botashev
TI  - Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 95
EP  - 101
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a9/
LA  - ru
ID  - ZVMMF_2006_46_1_a9
ER  - 
%0 Journal Article
%A Kh. I. Botashev
%T Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 95-101
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a9/
%G ru
%F ZVMMF_2006_46_1_a9
Kh. I. Botashev. Construction of quasi-periodic solutions of guaranteed accuracy by the small parameter method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 95-101. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a9/

[1] Botashev Kh. I., “O postroenii periodicheskikh reshenii s zadannoi tochnostyu metodom malogo parametra”, Zh. vychisl. matem. i matem. fiz., 38:5 (1998), 728–733 | MR | Zbl

[2] Botashev Kh. I., “O postroenii periodicheskikh reshenii s garantirovannoi tochnostyu dlya kvazilineinoi matematicheskoi modeli metodom malogo parametra”, Zh. vychisl. matem. i matem. fiz., 41:6 (2001), 938–946 | MR | Zbl

[3] Botashev Kh. I., “O lokalizatsii tochnykh reshenii v sluchae kvazilineinykh sistem vtorogo poryadka”, Differents. ur-niya, 39:4 (2003), 435–440 | MR | Zbl

[4] Bobylev H. A., Burman Yu. M., Korovin S. K., “Otsenka pogreshnosti metoda garmonicheskogo balansa”, Avtomatika i telemekhan., 1992, no. 6, 3–12 | MR | Zbl

[5] Bobylev H. A., Emelyanov S. V., Korovin S. K., Geometricheskie metody v variatsionnykh zadachakh, Nauka, M., 1998 | Zbl

[6] Urabe M., “Existence theorems of quasiperiodic solutions to nonlinear differential sustems”, Funkcional. Ekvac., 15 (1972), 75–100 | MR | Zbl