Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 77-82

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the problem of evaluating the continuous Morlet wavelet transform can be stated as the Cauchy problem for a system of two partial differential equations. The initial conditions for the desired functions, i.e., for the real and imaginary parts of the wavelet transform, are the analyzed function and a vanishing function, respectively. Numerical examples are given.
@article{ZVMMF_2006_46_1_a7,
     author = {E. B. Postnikov},
     title = {Evaluation of a~continuous wavelet transform by solving the {Cauchy} problem for a~system of partial differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {77--82},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/}
}
TY  - JOUR
AU  - E. B. Postnikov
TI  - Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 77
EP  - 82
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/
LA  - ru
ID  - ZVMMF_2006_46_1_a7
ER  - 
%0 Journal Article
%A E. B. Postnikov
%T Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 77-82
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/
%G ru
%F ZVMMF_2006_46_1_a7
E. B. Postnikov. Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 77-82. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/