@article{ZVMMF_2006_46_1_a7,
author = {E. B. Postnikov},
title = {Evaluation of a~continuous wavelet transform by solving the {Cauchy} problem for a~system of partial differential equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {77--82},
year = {2006},
volume = {46},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/}
}
TY - JOUR AU - E. B. Postnikov TI - Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 77 EP - 82 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/ LA - ru ID - ZVMMF_2006_46_1_a7 ER -
%0 Journal Article %A E. B. Postnikov %T Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 77-82 %V 46 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/ %G ru %F ZVMMF_2006_46_1_a7
E. B. Postnikov. Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 77-82. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a7/
[1] Koronovskii A. A., Khramov A. E., Nepreryvnyi veivlet-analiz i ego prilozheniya, Fizmatlit, M., 2003
[2] A. Poularikas (ed.), The transforms and applications handbook, CRC Press; IEEE Press, 2000 | MR
[3] Barnsley M., Fractals everywere, Acad. Press, Boston, 1993 | MR | Zbl
[4] Alvarez L., Guichard F., Lions P.-L., Morel J.-M., “Axioms and fundamental equations of image processing”, Arch. Ration. Mech. and Analys., 123 (1993), 199–257 | DOI | MR | Zbl
[5] “Spacial issue on partial differential equations and geometry-driven diffusion in image processing and analysis”, IEEE Trans. Image Proc., 7:3 (1998), 269–473 | DOI
[6] Mallat S., Zhong S., “Characterization of signals from multiscale edges”, IEEE Trans. Patt. Analys and Mach. Internat., 14:7 (1992), 710–732 | DOI | MR
[7] Mallat S., Hwang W. L., “Singularity detection and processing with wavelets”, IEEE Trans. Inform. Theory, 38:2 (1992), 617–643 | DOI | MR | Zbl
[8] Kestener P., Arneodo A., “Three-dimensional wavelet-based multifractal method: The need for revising the multifractal description of turbulence dissipation data”, Phys. Rev. Letts, 91 (2003), 494–501 | DOI
[9] Dobeshi I., Desyat lektsii o veivletakh, Regulyarnaya i khaoticheskaya dinamika, M., Izhevsk, 2001
[10] Haase M., Widjajakusuma J., Bader R., “Scaling laws and frequency decomposition from wavelet transform maxima lines and ridges”, Emergent Nature, World Scient., Singapore, 2001, 365–374
[11] Zeldovich Ya. B., Myshkis A. D., Elementy matematicheskoi fiziki, Nauka, M., 1973 | MR
[12] Skeel R. D., Berzins M., “A method for the spatial discretization of parabolic equations in one space variable”, SIAM J. Scand. and Stat. Comput., 11 (1990), 1–32 | DOI | MR | Zbl