Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 52-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem for a singularly perturbed parabolic convection-diffusion equation on an interval is considered. The higher order derivative in the equation is multiplied by a parameter $\varepsilon$ that can take arbitrary values in the half-open interval (0, 1]. The first derivative of the initial function has a discontinuity of the first kind at the point $x_0$. For small values of $\varepsilon$ a boundary layer with the typical width of $\varepsilon$ appears in a neighborhood of the part of the boundary through which the convective flow leaves the domain; in a neighborhood of the characteristic of the reduced equation outgoing from the point $(x_0,0)$, a transient (moving in time) layer with the typical width of $\varepsilon^{1/2}$ appears. Using the method of special grids that condense in a neighborhood of the boundary layer and the method of additive separation of the singularity of the transient layer, special difference schemes are designed that make it possible to approximate the solution of the boundary value problem $\varepsilon$-uniformly on the entire set $\bar G$, approximate the diffusion flow (i.e., the product $\varepsilon(\partial/\partial x)u(x,t))$ on the set $\bar G^*=\bar G\setminus\{(x_0,0)\}$, and approximate the derivative $(\partial/\partial x)u(x,t)$ on the same set outside the $m$-neighborhood of the boundary layer. The approximation of the derivatives $\varepsilon^2(\partial^2/\partial x^2)u(x,t))$ and $(\partial/\partial t)u(x, t)$ on the set $\bar G^*$ is also examined.
@article{ZVMMF_2006_46_1_a6,
     author = {G. I. Shishkin},
     title = {Grid approximation of singularly perturbed parabolic convection-diffusion equations with a~piecewise-smooth initial condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {52--76},
     year = {2006},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 52
EP  - 76
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a6/
LA  - ru
ID  - ZVMMF_2006_46_1_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 52-76
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a6/
%G ru
%F ZVMMF_2006_46_1_a6
G. I. Shishkin. Grid approximation of singularly perturbed parabolic convection-diffusion equations with a piecewise-smooth initial condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 52-76. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a6/

[1] Wilmott P., Howison S., Dewynne J., The mathematics of financial derivatives, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[2] Shlikhting G., Teoriya pogranichnogo sloya, Nauka, M., 1974

[3] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[4] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[5] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[6] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[7] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym granichnym usloviem”, Zh. vychisl. matem. i matem. fiz., 28:11 (1988), 1649–1662 | MR

[8] Shishkin G. I., “Raznostnaya skhema dlya singulyarno vozmuschennogo uravneniya parabolicheskogo tipa s razryvnym nachalnym usloviem”, Dokl. AN SSSR, 300:5 (1988), 1066–1070 | Zbl

[9] Hemker P. W., Shishkin G. I., “Discrete approximation of singularly perturbed parabolic PDEs with a discontinuous initial condition”, Comput. Fluid Dynamics J., 2:4 (1994), 375–392

[10] Kolmogorov V. L., Shishkin G. I., “Numerical methods for singularly perturbed boundary value problems modelling diffusion processes”, Singular Perturbation Problems in Chem. Phys., Advances in Chem. Phys. Ser., XCVII, J. Wiley Sons, New York, 1997, 181–362

[11] Shishkin G. I., “Approksimatsiya reshenii i diffuzionnykh potokov v sluchae singulyarno vozmuschennykh kraevykh zadach s razryvnymi nachalnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 36:9 (1996), 83–104 | MR | Zbl

[12] Shishkin G. I., “Singulyarno vozmuschennye kraevye zadachi s sosredotochennymi istochnikami i razryvnymi nachalnymi usloviyami”, Zh. vychisl. matem. i matem. fiz., 37:4 (1997), 429–446 | MR | Zbl

[13] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[14] Ladyzhenskaya O. A., Solonnikov B. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[15] Farrell P. A., Hegarty A. F., Miller J. J. H. et al., Robust computational techniques for boundary layers, Chapman Hall, Boca Raton, Florida; CRC Press, 2000 | MR | Zbl

[16] Li S., Creamer D. B., Shishkin G. I., “On numerical methods for a singularly perturbed Black–Scholes equation with nonsmooth initial data”, Proc. Internat. Conf. Comput. Math. ICCM'2004. Part II (Novosibirsk, June 2004), ICM MG Publisher, Novosibirsk, 2004, 896–900

[17] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[18] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinogo ellipticheskogo uravneniya v sluchae polnogo vyrozhdeniya”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1808–1825 | MR | Zbl

[19] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problem for quasi-linear parabolic equations in case of complete degeneracy in spatial variables”, Sovjet J. Numer. Analys. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl

[20] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[21] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Sci., Singapore, 1996 | MR