A method for the asymptotic stabilization to a given trajectory based on the initial data
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 37-51 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $S$ be an operator in a Banach space $H$ and $S^i(u)$, $i=0,1,\dots,u\in H$ be the evolutionary process specified by $S$. The following problem is considered: for a given point $z_0$ and a given initial condition $a_0$, find a correction l such that the trajectory $\{S^i(a_0+l)\}$ approaches $\{S^i(z_0)\}$ for $0. This problem is reduced to projecting $a_0$ on the manifold $\mathscr M^-(z_0,f^{(n)})$ defined in a neighborhood of $z_0$ and specified by a certain function $f^{(n)}$. In this paper, an iterative method is proposed for the construction of the desired correction $u=a_0+l$. The convergence of the method is substantiated, and its efficiency for the blow-up Chafee-Infante equation is verified. A constructive proof of the existence of a locally stable manifold $\mathscr M^-(z_0,f)$ in a neighborhood of a trajectory of hyperbolic type is one of the possible applications of the proposed method. For the points in $\mathscr M^-(z_0,f)$, the value of $n$ can be chosen arbitrarily large.
@article{ZVMMF_2006_46_1_a5,
     author = {A. A. Kornev},
     title = {A~method for the asymptotic stabilization to a~given trajectory based on the initial data},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {37--51},
     year = {2006},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/}
}
TY  - JOUR
AU  - A. A. Kornev
TI  - A method for the asymptotic stabilization to a given trajectory based on the initial data
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 37
EP  - 51
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/
LA  - ru
ID  - ZVMMF_2006_46_1_a5
ER  - 
%0 Journal Article
%A A. A. Kornev
%T A method for the asymptotic stabilization to a given trajectory based on the initial data
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 37-51
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/
%G ru
%F ZVMMF_2006_46_1_a5
A. A. Kornev. A method for the asymptotic stabilization to a given trajectory based on the initial data. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/

[1] Anosov D. V., “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90, M., 1967, 3–210 | MR

[2] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Sobr. soch., v. II, Izd-vo AN SSSR, M., 1954

[3] Pesin Ya. M., “Kharakteristicheskie pokazateli Lyapunova i gladkaya ergodicheskaya teoriya”, Uspekhi matem. nauk, 32:4(196) (1977), 55–112 | MR | Zbl

[4] Ladyzhenskaya O. A., Solonnikov V. A., “O printsipe linearizatsii i invariantnykh mnogoobraziyakh dlya zadach magnitnoi gidrodinamiki”, Zap. nauchn. seminarov LOMI AN SSSR, 38, L., 1973, 46–93 | Zbl

[5] Kornev A. A., “Ob iteratsionnom metode postroeniya “usov Adamara””, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1346–1355 | MR | Zbl

[6] Anosov D. V., “Mnogomernyi analog odnoi teoremy Adamara”, Nauchn. dokl. vyssh. shkoly. Fiz.-matem. nauki, 1 (1959), 3–12 | Zbl

[7] Fursikov A. B., “Realnye protsessy i realizuemost metoda stabilizatsii sistemy Nave–Stoksa posredstvom upravleniya s obratnoi svyazyu s granitsy oblasti”, Nelineinye zadachi matem. fiz. i smezhnye voprosy, Mezhdunar. matem. ser., 2, 2002, 127–164

[8] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii nelineinykh sistem, Ch. 1, In-t kompyuternykh issl., M., Izhevsk, 2004

[9] Kornev A. A., “K obschei teorii ustoichivosti poludinamicheskikh sistem”, Dokl. RAN, 387:1 (2002), 13–15 | MR | Zbl

[10] Malyshev A. N., Vvedenie v vychislitelnuyu lineinuyu algebru, Nauka, Novosibirsk, 1991

[11] Demmel Dzh., Vychislitelnaya lineinaya algebra, Mir, M., 2001

[12] Kornev A. A., “Klassifikatsiya metodov priblizhennogo proektirovaniya na ustoichivoe mnogoobrazie”, Dokl. RAN, 400:6 (2005), 736–738 | MR