A method for the asymptotic stabilization to a given trajectory based on the initial data
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 37-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $S$ be an operator in a Banach space $H$ and $S^i(u)$, $i=0,1,\dots,u\in H$ be the evolutionary process specified by $S$. The following problem is considered: for a given point $z_0$ and a given initial condition $a_0$, find a correction l such that the trajectory $\{S^i(a_0+l)\}$ approaches $\{S^i(z_0)\}$ for $0$. This problem is reduced to projecting $a_0$ on the manifold $\mathscr M^-(z_0,f^{(n)})$ defined in a neighborhood of $z_0$ and specified by a certain function $f^{(n)}$. In this paper, an iterative method is proposed for the construction of the desired correction $u=a_0+l$. The convergence of the method is substantiated, and its efficiency for the blow-up Chafee-Infante equation is verified. A constructive proof of the existence of a locally stable manifold $\mathscr M^-(z_0,f)$ in a neighborhood of a trajectory of hyperbolic type is one of the possible applications of the proposed method. For the points in $\mathscr M^-(z_0,f)$, the value of $n$ can be chosen arbitrarily large.
@article{ZVMMF_2006_46_1_a5,
author = {A. A. Kornev},
title = {A~method for the asymptotic stabilization to a~given trajectory based on the initial data},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {37--51},
publisher = {mathdoc},
volume = {46},
number = {1},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/}
}
TY - JOUR AU - A. A. Kornev TI - A method for the asymptotic stabilization to a given trajectory based on the initial data JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 37 EP - 51 VL - 46 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/ LA - ru ID - ZVMMF_2006_46_1_a5 ER -
%0 Journal Article %A A. A. Kornev %T A method for the asymptotic stabilization to a given trajectory based on the initial data %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 37-51 %V 46 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/ %G ru %F ZVMMF_2006_46_1_a5
A. A. Kornev. A method for the asymptotic stabilization to a given trajectory based on the initial data. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 37-51. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a5/