An iterative method based on a modified Lagrangian functional for finding a saddle point in the semicoercive Signorini problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 26-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The iterative Uzawa method with a modified Lagrangian functional is examined in the framework of the Signorini problem.
@article{ZVMMF_2006_46_1_a4,
     author = {G. S. Woo and R. V. Namm and S. A. Sachkov},
     title = {An iterative method based on a~modified {Lagrangian} functional for finding a~saddle point in the semicoercive {Signorini} problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {26--36},
     year = {2006},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a4/}
}
TY  - JOUR
AU  - G. S. Woo
AU  - R. V. Namm
AU  - S. A. Sachkov
TI  - An iterative method based on a modified Lagrangian functional for finding a saddle point in the semicoercive Signorini problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 26
EP  - 36
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a4/
LA  - ru
ID  - ZVMMF_2006_46_1_a4
ER  - 
%0 Journal Article
%A G. S. Woo
%A R. V. Namm
%A S. A. Sachkov
%T An iterative method based on a modified Lagrangian functional for finding a saddle point in the semicoercive Signorini problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 26-36
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a4/
%G ru
%F ZVMMF_2006_46_1_a4
G. S. Woo; R. V. Namm; S. A. Sachkov. An iterative method based on a modified Lagrangian functional for finding a saddle point in the semicoercive Signorini problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 26-36. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a4/

[1] Namm R. V., Sachkov S. A., “Ob ustoichivom metode resheniya zadachi Mosolova i Myasnikova s treniem na granitse, osnovannom na skheme dvoistvennosti”, Sibirskii zh. vychisl. matem., 5:4 (2002), 351–365 | MR | Zbl

[2] Zolotukhin A. Ya., Namm R. V., Panina A. B., “Priblizhennoe reshenie polukoertsitivnoi zadachi Sinorini s neodnorodnym granichnym usloviem”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 388–398 | MR | Zbl

[3] Vikhtenko E. M., Namm R. V., “O metode resheniya polukoertsitivnykh variatsionnykh neravenstv, osnovannom na metode iterativnoi proksimalnoi regulyarizatsii”, Izv. vuzov. Matematika, 2004, no. 1, 31–35 | MR | Zbl

[4] Glovinski R.,Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[5] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973

[6] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[7] Dyuvo G., Lions Zh.-L., Neravenstva v fizike i mekhanike, Nauka, M., 1980

[8] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl

[9] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981 | Zbl

[10] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[11] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[12] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[13] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[14] Brezis H., “Problemes unilatéraux”, J. Math. Pures et Appl., 51 (1972), 1–168 | MR | Zbl

[15] Grisvard P., Boundary value problems in non-smooth domains, MD 20742, Univ. Maryland Dept. Math. College Park, 1980