The statement and numerical solution of an optimization problem in X-ray tomography
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 18-25 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonclassical problem is considered for the transport equation with coefficients depending on the energy of radiation. The task is to find the discontinuity surfaces for the coefficients of the equation from measurements of the radiation flux leaving the medium. For this tomography problem, an optimization problem is stated and numerically analyzed. The latter consists in determining the radiation energy that ensures the best reconstruction of the unknown medium. A simplified optimization problem is solved analytically.
@article{ZVMMF_2006_46_1_a3,
     author = {D. S. Anikonov and I. V. Prokhorov},
     title = {The statement and numerical solution of an optimization problem in {X-ray} tomography},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {18--25},
     year = {2006},
     volume = {46},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a3/}
}
TY  - JOUR
AU  - D. S. Anikonov
AU  - I. V. Prokhorov
TI  - The statement and numerical solution of an optimization problem in X-ray tomography
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 18
EP  - 25
VL  - 46
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a3/
LA  - ru
ID  - ZVMMF_2006_46_1_a3
ER  - 
%0 Journal Article
%A D. S. Anikonov
%A I. V. Prokhorov
%T The statement and numerical solution of an optimization problem in X-ray tomography
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 18-25
%V 46
%N 1
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a3/
%G ru
%F ZVMMF_2006_46_1_a3
D. S. Anikonov; I. V. Prokhorov. The statement and numerical solution of an optimization problem in X-ray tomography. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 18-25. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a3/

[1] Vladimirov B. C., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. MIAN SSSR, 61, M., 1961, 3–158

[2] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[3] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[4] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Transport equation and tomography, VSP, Utrecht, Boston, 2002 | MR

[5] Anikonov D. S., Nazarov V. G., Prokhorov I. V., Poorly visible media in X-ray tomography, VSP, Utrecht, Boston, 2002

[6] Konovalova D. S., “Odin sposob approksimatsii mery vidimosti v rentgenovskoi tomografii”, Sibirskii zh. industr. matem., 8:1(21) (2005), 64–69 | MR

[7] Akhiezer A. I., Berestetskii V. B., Kvantovaya elektrodinamika, Nauka, M., 1981

[8] Hubbell J. H., Seltzer S. M., Tables of X-ray mass attenuation coefficients and mass energy-absorbtion coefficients 1 keV to 20 MeV for elements $Z=1$ to 92 and 48 additional substances of dosimetric interest, NISTIR-5632, Nat. Inst. Standard. and Technol., Gaithersburg, 1995

[9] Marchuk G. I., Mikhailov G. A., Nazarliev M. A. i dr., Metod Monte-Karlo v atmosfernoi optike, Nauka, Novosibirsk, 1976 | Zbl

[10] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[11] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl