@article{ZVMMF_2006_46_1_a11,
author = {V. I. Pinchukov},
title = {Three- and four-step implicit absolutely stable fourth-order {Runge{\textendash}Kutta} schemes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {116--130},
year = {2006},
volume = {46},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a11/}
}
TY - JOUR AU - V. I. Pinchukov TI - Three- and four-step implicit absolutely stable fourth-order Runge–Kutta schemes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 116 EP - 130 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a11/ LA - ru ID - ZVMMF_2006_46_1_a11 ER -
V. I. Pinchukov. Three- and four-step implicit absolutely stable fourth-order Runge–Kutta schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 116-130. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a11/
[1] Rusanov V. V., “Raznostnye skhemy tretego poryadka tochnosti dlya skvoznogo rascheta razryvnykh reshenii”, Dokl. AN SSSR, 180:6 (1968), 1303–1305 | MR | Zbl
[2] Burstein S. Z., Mirin A. A., “Third order difference methods for hyperbolic equations”, J. Comput. Phys., 5:3 (1970), 547–571 | DOI | MR | Zbl
[3] Kutler P., Lomax H., Warming R., Computation of space shuttle flow fields using noncentered finite-difference schemes, AIAA Paper No 72-193, 1972, 25 pp.
[4] Shu C.-W., “Total-variation-diminishing time discretizations”, SIAM J. Sci. Statist. Comput., 9:6 (1988), 1073–1084 | DOI | MR | Zbl
[5] Osher S., Shu C.-W., “Efficient implementation of essentially nonoscillatory shock-capturring schemes”, J. Comput. Phys., 77:2 (1988), 439–471 | DOI | MR | Zbl
[6] Pinchukov V. I., Shu Ch.-V., Chislennye metody vysokikh poryadkov dlya zadach aerogidrodinamiki, Izd-vo SO RAN, Novosibirsk, 2000
[7] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh prilozheniya k problemam aerogidrodinamiki, Nauka, M., 1990 | MR
[8] Pinchukov V. I., “Absolyutno ustoichivye skhemy Runge–Kutty tretego poryadka approksimatsii”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1855–1868 | MR | Zbl
[9] Pinchukov V. I., “Sravnenie neyavnykh skhem Runge–Kutty tretego poryadka”, Vychisl. tekhnologii, 7:5 (2002), 44–57 | MR | Zbl
[10] Pinchukov V. I., “O neyavnykh absolyutno ustoichivykh skhemakh Runge–Kutty chetvertogo poryadka”, Vychisl. tekhnologii, 7:1 (2002), 96–105 | MR | Zbl
[11] Pinchukov V. I., “O chislennom issledovanii transzvukovykh turbulentnykh techenii vozle kryla neyavnymi skhemami vysokikh poryadkov”, Vychisl. tekhnologii, 6:2 (2001), 110–121 | MR | Zbl
[12] Pinchukov V. I., “Nelineinye setochnye filtry i ikh ispolzovanie v skhemakh vysokikh poryadkov dlya zadach aerodinamiki”, Matem. modelirovanie, 10:11 (1999), 111–115 | MR
[13] Jameson A., Schmidt W., Turcel E., Numerical solution of the Euler equations by finite-volume method using Runge–Kutta time stepping schemes, AIAA Paper 81-1259, 1981 | Zbl