Three- and four-step implicit absolutely stable fourth-order Runge–Kutta schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 116-130

Voir la notice de l'article provenant de la source Math-Net.Ru

Two types of implicit fourth-order Runge–Kutta schemes are constructed for first-order ordinary differential equations, multidimensional transfer equations, and compressible gas equations. The absolute stability of the schemes is proved by applying the principle of frozen coefficients. Adaptive artificial viscosity ensuring good time convergence and oscillations damping near discontinuities is used in solving gas dynamics equations. The comparative efficiency of the schemes is illustrated by numerical results obtained for compressible gas flows.
@article{ZVMMF_2006_46_1_a11,
     author = {V. I. Pinchukov},
     title = {Three- and four-step implicit absolutely stable fourth-order {Runge{\textendash}Kutta} schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {116--130},
     publisher = {mathdoc},
     volume = {46},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a11/}
}
TY  - JOUR
AU  - V. I. Pinchukov
TI  - Three- and four-step implicit absolutely stable fourth-order Runge–Kutta schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 116
EP  - 130
VL  - 46
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a11/
LA  - ru
ID  - ZVMMF_2006_46_1_a11
ER  - 
%0 Journal Article
%A V. I. Pinchukov
%T Three- and four-step implicit absolutely stable fourth-order Runge–Kutta schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 116-130
%V 46
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a11/
%G ru
%F ZVMMF_2006_46_1_a11
V. I. Pinchukov. Three- and four-step implicit absolutely stable fourth-order Runge–Kutta schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 116-130. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a11/