@article{ZVMMF_2006_46_1_a10,
author = {Y. Amirat and G. A. Chechkin and R. R. Gadyl'shin},
title = {Asymptotics of simple eigenvalues and eigenfunctions for the {Laplace} operator in a~domain with oscillating boundary},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {102--115},
year = {2006},
volume = {46},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a10/}
}
TY - JOUR AU - Y. Amirat AU - G. A. Chechkin AU - R. R. Gadyl'shin TI - Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 102 EP - 115 VL - 46 IS - 1 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a10/ LA - en ID - ZVMMF_2006_46_1_a10 ER -
%0 Journal Article %A Y. Amirat %A G. A. Chechkin %A R. R. Gadyl'shin %T Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 102-115 %V 46 %N 1 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a10/ %G en %F ZVMMF_2006_46_1_a10
Y. Amirat; G. A. Chechkin; R. R. Gadyl'shin. Asymptotics of simple eigenvalues and eigenfunctions for the Laplace operator in a domain with oscillating boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 1, pp. 102-115. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_1_a10/
[1] Achdou Y., Pironneau O., Valentin F., “Effective boundary conditions for laminar flows over rough boundaries”, J. Comput. Phys., 147 (1998), 187–218 | DOI | MR | Zbl
[2] Amirat Y., Simon J., “Riblets and drag minimization”, Optimizat. Methods in PDE's, Contemporary Math., 209, AMS, 1997, 9–17 | MR
[3] Amirat Y., Bresch D., Lemoine J., Simon J., “Effect of rugosity on a flow governed by Navier–Stokes equations”, Quarterly Appl. Math., 59:4 (2001), 769–785 | MR | Zbl
[4] Babuška I., Vyborny R., “Continuous dependence of eigenvalues on the domains”, Czech. Math. J., 15 (1965), 169–178 | MR | Zbl
[5] Belyaev A. G., “Average of the third boundary-value problem for the poisson equation in a domain with rapidly oscillating boundary”, Vestnik Moskov. Univ. Ser. I. Mat. Mech., 6 (1988), 63–66 | MR | Zbl
[6] Belyaev A. G., On singular perturbations of boundary-value problems, PhD Thesis, Moscow State Univ., Moscow, 1990
[7] Belyaev A. G., Piatnitski A. L., Chechkin G. A., “Asymptotic behavior of a solution to a boundary-value problem in a perforated domain with oscillating boundary”, Siberian Math. Journal, 39:4 (1998), 621–644 | DOI | MR | Zbl
[8] Bouchitte G., Lidouh A., Suquet P., “Homogeneisation de frontiere pour la modelisation du contact entre un corps deformable non lineaire un corps rigide”, C. r. Acad. Sci. Paris Ser. I, 313 (1991), 967–972 | MR | Zbl
[9] Brizzi R., Chalot J. P., “Homogénéisation de frontière”, Ric. Mat., 46:2 (1997), 341–387 | MR | Zbl
[10] Chechkin G. A., Chechkina T. P., “On homogenization problems in domains of the “infusorium” type”, J. Math. Sci., 120:3 (2004), 1470–1482 | DOI | MR
[11] Chechkin G. A., Chechkina T. P., “Homogenization theorem for problems in domains of the “infusorian” type with uncoordinated structure”, J. Math. Sci., 123:5 (2004), 4363–4380 | DOI | MR | Zbl
[12] Chechkin G. A., Cioranescu D., “Vibration of a thin plate with a “rough” surface”, Nonlinear Partial Different. Equations and their Applic. College de France Seminar, Studies in Math. and its Applic., XIV, Elsevier, Amsterdam etc., 2002, 147–169 | MR | Zbl
[13] Chechkin G. A., Friedman A., Piatnitski A. L., “The boundary-value problem in domains with very rapidly oscillating boundary”, J. Math. Analys. and Appl., 231:1 (1999), 213–234 | DOI | MR | Zbl
[14] Friedman A., Bei Hu, Yong Liu., A boundary-value problem for the poisson equation with multi-scale oscillating boundary, IMA Preprint Series #1415, IMA Univ. Minnesota, Minneapolis, 1996 | Zbl
[15] Gaudiello A., “Asymptotic behavior of non-homogeneous neumann problems in domains with oscillating boundary”, Ric. Math., 43 (1994), 239–292 | MR | Zbl
[16] Jag̈er W., Oleinik O. A., Shaposhnikova T. A., “On the averaging of boundary value problems in domains with rapidly oscillating nonperiodic boundary”, Different. Equat., 36:6 (2000), 833–846 | DOI | MR
[17] Jäger W., Mikelić A., “On the rouehness-induced effective boundary conditions for an incompressible viscous flow”, J. Different. Equat., 170:1 (2001), 96–122 | DOI | MR | Zbl
[18] Kohler W., Papanicolaou G., Varadhan S., “Boundary and interface problems in regions with very rough boundaries”, Multiple Scattering and Waves in Random Media, North-Holland, Amsterdam, 1981, 165–197 | MR
[19] Marchenko V. A., Khruslov E. Ya., Boundary-value problems in domains with fine-grained boundaries, Nauk. Dumka, Kiev, 1974
[20] Mel'nik T. A., Nazarov S. A., “Asymptotic behavior of the solution of the neumann spectral problem in a domain of “tooth comb” type”, J. Math. Sci., 85:6 (1997), 2326–2346 | DOI | MR
[21] Nazarov S. A., Olvushin M. V., “Perturbation of the eigenvalues of the neumann problem due to the variation of the domain boundary”, St. Petersburg Math. J., 5:2 (1994), 371–387 | MR
[22] Nevard J., Keller J. B., “Homogenization of rough boundaries and interfaces”, SIAM J. Appl. Math., 57:6 (1997), 1660–1686 | DOI | MR | Zbl
[23] Sánchez-Palencia E., Homogenization techniques for composite media, Springer, Berlin, New York, 1987 | MR | Zbl
[24] Oleinik O. A., Shamaev A. S., Yosifian G. A., Mathematical problems in elasticity and homogenization, North-Holland, Amsterdam, 1992 | MR
[25] Il'in A. M., Matching of asymptotic expansions of solutions of boundary-value problems, AMS, Providence, 1992 | MR
[26] Lobo-Hidalgo M., Sánches-Palencia E., “Sur certaines proprietes spectrales des perturbations du domaine dans les problemes aux limites”, Communs Partial Different. Equaf., 4 (1979), 1085–1098 | DOI | MR | Zbl
[27] Sobolev S. L., Some applications of functional analysis in mathematical physics, Translations of Math. Monographs, 90, AMS, Providence, 1991 | MR | Zbl
[28] Sobolev S. L., Selected problems in the theory of function spaces and generalized functions, Nauka, Moscow, 1989 | MR
[29] Gadyl'shin R. R., “Characteristic frequencies of bodies with thin spikes. I: Convergence and estimates”, Math. Notes, 54:6 (1993), 1192–1199 | DOI | MR
[30] Gadyl'shin R. R., “Concordance method of asymptotic expansions in a singularly-perturbed boundary-value problem for the Laplace operator”, J. Math. Sci., 125:5 (2005), 579–609 | DOI | MR
[31] Gadyl'shin R. R., “Asymptotic properties of an eigenvalue of a problem for a singularly perturbed self-adjoint elliptic equation with a small parameter in the boundary conditions”, Different. Equat., 22 (1986), 474–483 | MR
[32] Planida M. Yu., “On the convergence of solutions of singularly perturbed boundary-value problems for the laplace operator”, Math. Notes, 71:5–6 (2002), 794–803 | DOI | MR | Zbl
[33] Il'in A. M., “A Boundary-value problem for an elliptic equation of second order in a domain with a narrow slit. I. The two-dimensional case”, Math. Siberian (N.S.), 99(141):4 (1976), 514–537 | MR
[34] Il'in A. M., “Boundary-value problem for an elliptic equation of second order in a domain with a narrow slit. I. Domain with a small opening”, Math. Siberian (N.S.), 103(145):2 (1977), 265–284 | MR
[35] Il'in A. M., “Study of the asymptotic behavior of the solution of an elliptic boundary-value problem in a domain with a small hole”, Trudy Seminara I. G. Petrovskogo, 6, 1981, 57–82 | MR
[36] Gadyl'shin R. R., “Asymptotics of the minimum eigenvalue for a circle with fast oscillating boundary conditions”, C. r. Acad. Sci., Paris. Sér. I, 323:3 (1996), 319–323 | MR
[37] Gadyl'shin R. R., “Boundary-value problem for the laplacian with rapidly oscillating boundary conditions”, Dokl. Math., 58:2 (1998), 293–296 | MR
[38] Gadyl'shin R. R., “On the eigenvalue asymptotics for periodically clamped membranes”, St. Petersbourg Math. J., 10:1 (1999), 1–14 | MR
[39] Allaire G., Amar M., “Boundary layer tails in periodic homogenization”, ESAIM Control, Optimisat and Calculus of Variations, 4 (1999), 209–243 | DOI | MR | Zbl
[40] Landis E. M., Panasenko G. P., “A theorem on the asymptotics of solutions of elliptic equations with coefficients periodic in all variables except one”, Soviet Math. Dokl., 18:4 (1977), 1140–1143 | MR | Zbl
[41] Lions J.-L., Some methods in the mathematical analysis of systems and their control, Kexue Chubanshe (Science Press), Beijing; Gordon and Breach Sci. Publ., New York, 1981 | MR