A numerical comparison of two minimal residual methods for linear polynomials in unitary matrices
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 12, pp. 2138-2148 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two minimal residual methods for solving linear systems of the form $(\alpha U+\beta I)x=b$, where $U$ is a unitary matrix, are compared numerically. The first method uses conventional Krylov subspaces, while the second involves generalized Krylov subspaces. Experiments favor the second method if $|\alpha|>|\beta|$. Moreover, the greater the ratio $|\alpha|/|\beta|$, the higher the superiority of the second method.
@article{ZVMMF_2006_46_12_a2,
     author = {M. Dana and Kh. D. Ikramov},
     title = {A~numerical comparison of two minimal residual methods for linear polynomials in unitary matrices},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2138--2148},
     year = {2006},
     volume = {46},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_12_a2/}
}
TY  - JOUR
AU  - M. Dana
AU  - Kh. D. Ikramov
TI  - A numerical comparison of two minimal residual methods for linear polynomials in unitary matrices
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 2138
EP  - 2148
VL  - 46
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_12_a2/
LA  - ru
ID  - ZVMMF_2006_46_12_a2
ER  - 
%0 Journal Article
%A M. Dana
%A Kh. D. Ikramov
%T A numerical comparison of two minimal residual methods for linear polynomials in unitary matrices
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 2138-2148
%V 46
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_12_a2/
%G ru
%F ZVMMF_2006_46_12_a2
M. Dana; Kh. D. Ikramov. A numerical comparison of two minimal residual methods for linear polynomials in unitary matrices. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 12, pp. 2138-2148. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_12_a2/