Iterative proximal regularization method for finding a saddle point in the semicoercive Signorini problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2024-2031 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm for seeking a saddle point for the semicoercive variational Signorini inequality is studied. The algorithm is based on an iterative proximal regularization of a modified Lagrangian functional.
@article{ZVMMF_2006_46_11_a8,
     author = {G. S. Woo and S. Kim and R. V. Namm and S. A. Sachkov},
     title = {Iterative proximal regularization method for finding a~saddle point in the semicoercive {Signorini} problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2024--2031},
     year = {2006},
     volume = {46},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a8/}
}
TY  - JOUR
AU  - G. S. Woo
AU  - S. Kim
AU  - R. V. Namm
AU  - S. A. Sachkov
TI  - Iterative proximal regularization method for finding a saddle point in the semicoercive Signorini problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 2024
EP  - 2031
VL  - 46
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a8/
LA  - ru
ID  - ZVMMF_2006_46_11_a8
ER  - 
%0 Journal Article
%A G. S. Woo
%A S. Kim
%A R. V. Namm
%A S. A. Sachkov
%T Iterative proximal regularization method for finding a saddle point in the semicoercive Signorini problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 2024-2031
%V 46
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a8/
%G ru
%F ZVMMF_2006_46_11_a8
G. S. Woo; S. Kim; R. V. Namm; S. A. Sachkov. Iterative proximal regularization method for finding a saddle point in the semicoercive Signorini problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2024-2031. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a8/

[1] By G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36 | MR | Zbl

[2] Antipin A. C., “O metode vypuklogo programmirovaniya, ispolzuyuschem simmetricheskuyu modifikatsiyu funktsionala Lagranzha”, Ekonomika i matem. metody, 12:6 (1976), 1164–1173 | Zbl

[3] Rockafellar R. T., “Augmented Lagrangians and applications of the proximal point algorithm in convex programming”, Math. Operat. Res., 1:2 (1976), 97–116 | DOI | MR | Zbl

[4] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR

[5] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl

[6] Namm P. V., Podgaev A. G., “O $W_2^2$ regulyarnosti reshenii polukoertsitivnykh variatsionnykh neravenstv”, Dalnevostochnyi matem. zhurnal, 3:2 (2002), 210–215