Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2009-2023 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New hybrid methods for approximating the Pareto frontier of the feasible set of criteria vectors in nonlinear multicriteria optimization problems with nonconvex Pareto frontiers are considered. Since the approximation of the Pareto frontier is an ill-posed problem, the methods are based on approximating the Edgeworth–Pareto hull (EPH), i.e., the maximum set having the same Pareto frontier as the original feasible set of criteria vectors. The EPH approximation also makes it possible to visualize the Pareto frontier and to estimate the quality of the approximation. In the methods proposed, the statistical estimation of the quality of the current EPH approximation is combined with its improvement based on a combination of random search, local optimization, adaptive compression of the search region, and genetic algorithms.
@article{ZVMMF_2006_46_11_a7,
     author = {V. E. Berezkin and G. K. Kamenev and A. V. Lotov},
     title = {Hybrid adaptive methods for approximating a~nonconvex multidimensional {Pareto} frontier},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2009--2023},
     year = {2006},
     volume = {46},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/}
}
TY  - JOUR
AU  - V. E. Berezkin
AU  - G. K. Kamenev
AU  - A. V. Lotov
TI  - Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 2009
EP  - 2023
VL  - 46
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/
LA  - ru
ID  - ZVMMF_2006_46_11_a7
ER  - 
%0 Journal Article
%A V. E. Berezkin
%A G. K. Kamenev
%A A. V. Lotov
%T Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 2009-2023
%V 46
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/
%G ru
%F ZVMMF_2006_46_11_a7
V. E. Berezkin; G. K. Kamenev; A. V. Lotov. Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2009-2023. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/

[1] Krasnoschekov P. S., Morozov V. V., Fedorov V. V., “Dekompozitsiya v zadachakh proektirovaniya”, Izv. AN SSSR. Ser. Tekhn. kibernetika, 1979, no. 2, 7–17

[2] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29 | MR | Zbl

[3] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992 | MR

[4] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997

[5] Mieitinen K., Nonlinear multiobjective optimization, Kluwer, Boston, 1999

[6] Lotov A., Bushenkov V., Kamenev G., Feasible goals method. Search for smart decisions, Computing Center RAS, M., 2001 | Zbl

[7] Lotov A. V, Bushenkov V. A, Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer, Boston, 2004 | MR | Zbl

[8] Lotov A. B., Pospelova I. I., Konspekt lektsii po teorii i metodam mnogokriterialnoi optimizatsii, Izd-vo MGU, M., 2006

[9] Popov N. M., “Ob approksimatsii mnozhestva Pareto metodom svertok”, Vestn. MGU. Vychisl. matem. i kibernetika, 1982, no. 2, 35–41 | MR | Zbl

[10] Nefedov V. N., Metody regulyarizatsii mnogokriterialnykh zadach optimizatsii, MAI, M., 1984

[11] Sobol I. M., Statnikov R. B., Vybor optimalnykh parametrov v zadachakh so mnogimi kriteriyami, Nauka, M., 1981 | MR

[12] Statnikov R. B., Matusov J., Multicriteria optimization and engineering, Chapman and Hall, NJ, 1995

[13] Deb K., Multi-objective optimization using evolutionary algorithms, Wiley, Chichester, UK, 2001 | MR

[14] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Acad. Press, Orlando, 1985 | MR | Zbl

[15] Lotov A. B., “O ponyatii obobschennykh mnozhestv dostizhimosti i ikh postroenii dlya lineinykh upravlyaemykh sistem”, Dokl. AN SSSR, 250:5 (1980), 1081–1083 | MR | Zbl

[16] Bushenkov V. A., Gusev D. V., Kamenev G. K. i dr., “Vizualizatsiya mnozhestva Pareto v mnogomernoi zadache vybora”, Dokl. RAN, 335:5 (1994), 567–569 | Zbl

[17] Lotov A. B., Kamenev G. K., Berezkin V. E., “Approksimatsiya i vizualizatsiya paretovoi granitsy dlya nevypuklykh mnogokriterialnykh zadach”, Dokl. RAN, 386:6 (2002), 738–741 | MR | Zbl

[18] Larichev O. I., Ob'ektivnye modeli i sub'ektivnye resheniya, Nauka, M., 1987 | MR

[19] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118 | MR

[20] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom glubokikh yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl

[21] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR

[22] Berezkin V. E., Analiz i realizatsiya metodov approksimatsii paretovoi granitsy dlya nelineinykh sistem, VTs RAN, M., 2002

[23] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[24] Horst R., Pardalos P. M., Handbook on global optimization, Kluwer, Dordrecht, NL, 1995 | MR

[25] Zhiglyavskii A. A., Zhilinskas A. G., Metody poiska globalnogo ekstremuma, Nauka, M., 1991 | MR

[26] Berezkin V. E., Kamenev G. K., Lotov A. B., Realizatsiya metoda dostizhimykh tselei dlya nelineinykh modelei v MS Excel, VTs RAN, M., 2000

[27] Berezkin V. E., Eksperimenty po approksimatsii paretovoi granitsy dlya nelineinykh sistem, VTs RAN, M., 2005 | MR

[28] Laitinen E., Neittaanmaki P., “On numerical solution of the problem connected with the control of the secondary cooling in the continuous casting process”, Control Theory and Advances Techn., 4 (1988), 285–305 | MR

[29] Miettininen K., Makela M. M., Mannikko T., “Optimal control of continuous casting by nondifferentiable multiobjective optimization”, Comput. Optimizat. and Applic., 11 (1998), 177–194 | DOI | MR

[30] Lotov A., Berezkin V., Kamenev G., Miettinen K., “Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach”, Appl. Math. Modelling, 29:7 (2005), 653–672 | DOI | Zbl