@article{ZVMMF_2006_46_11_a7,
author = {V. E. Berezkin and G. K. Kamenev and A. V. Lotov},
title = {Hybrid adaptive methods for approximating a~nonconvex multidimensional {Pareto} frontier},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {2009--2023},
year = {2006},
volume = {46},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/}
}
TY - JOUR AU - V. E. Berezkin AU - G. K. Kamenev AU - A. V. Lotov TI - Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 2009 EP - 2023 VL - 46 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/ LA - ru ID - ZVMMF_2006_46_11_a7 ER -
%0 Journal Article %A V. E. Berezkin %A G. K. Kamenev %A A. V. Lotov %T Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 2009-2023 %V 46 %N 11 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/ %G ru %F ZVMMF_2006_46_11_a7
V. E. Berezkin; G. K. Kamenev; A. V. Lotov. Hybrid adaptive methods for approximating a nonconvex multidimensional Pareto frontier. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2009-2023. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a7/
[1] Krasnoschekov P. S., Morozov V. V., Fedorov V. V., “Dekompozitsiya v zadachakh proektirovaniya”, Izv. AN SSSR. Ser. Tekhn. kibernetika, 1979, no. 2, 7–17
[2] Evtushenko Yu. G., Potapov M. A., “Metody chislennogo resheniya mnogokriterialnykh zadach”, Dokl. AN SSSR, 291 (1986), 25–29 | MR | Zbl
[3] Shtoier R., Mnogokriterialnaya optimizatsiya, Radio i svyaz, M., 1992 | MR
[4] Lotov A. B., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[5] Mieitinen K., Nonlinear multiobjective optimization, Kluwer, Boston, 1999
[6] Lotov A., Bushenkov V., Kamenev G., Feasible goals method. Search for smart decisions, Computing Center RAS, M., 2001 | Zbl
[7] Lotov A. V, Bushenkov V. A, Kamenev G. K., Interactive decision maps. Approximation and visualization of Pareto frontier, Kluwer, Boston, 2004 | MR | Zbl
[8] Lotov A. B., Pospelova I. I., Konspekt lektsii po teorii i metodam mnogokriterialnoi optimizatsii, Izd-vo MGU, M., 2006
[9] Popov N. M., “Ob approksimatsii mnozhestva Pareto metodom svertok”, Vestn. MGU. Vychisl. matem. i kibernetika, 1982, no. 2, 35–41 | MR | Zbl
[10] Nefedov V. N., Metody regulyarizatsii mnogokriterialnykh zadach optimizatsii, MAI, M., 1984
[11] Sobol I. M., Statnikov R. B., Vybor optimalnykh parametrov v zadachakh so mnogimi kriteriyami, Nauka, M., 1981 | MR
[12] Statnikov R. B., Matusov J., Multicriteria optimization and engineering, Chapman and Hall, NJ, 1995
[13] Deb K., Multi-objective optimization using evolutionary algorithms, Wiley, Chichester, UK, 2001 | MR
[14] Sawaragi Y., Nakayama H., Tanino T., Theory of multiobjective optimization, Acad. Press, Orlando, 1985 | MR | Zbl
[15] Lotov A. B., “O ponyatii obobschennykh mnozhestv dostizhimosti i ikh postroenii dlya lineinykh upravlyaemykh sistem”, Dokl. AN SSSR, 250:5 (1980), 1081–1083 | MR | Zbl
[16] Bushenkov V. A., Gusev D. V., Kamenev G. K. i dr., “Vizualizatsiya mnozhestva Pareto v mnogomernoi zadache vybora”, Dokl. RAN, 335:5 (1994), 567–569 | Zbl
[17] Lotov A. B., Kamenev G. K., Berezkin V. E., “Approksimatsiya i vizualizatsiya paretovoi granitsy dlya nevypuklykh mnogokriterialnykh zadach”, Dokl. RAN, 386:6 (2002), 738–741 | MR | Zbl
[18] Larichev O. I., Ob'ektivnye modeli i sub'ektivnye resheniya, Nauka, M., 1987 | MR
[19] Kamenev G. K., Kondratev D. L., “Ob odnom metode issledovaniya nezamknutykh nelineinykh modelei”, Matem. modelirovanie, 1992, no. 3, 105–118 | MR
[20] Kamenev G. K., “Approksimatsiya vpolne ogranichennykh mnozhestv metodom glubokikh yam”, Zh. vychisl. matem. i matem. fiz., 41:11 (2001), 1751–1760 | MR | Zbl
[21] Shiryaev A. N., Veroyatnost, Nauka, M., 1989 | MR
[22] Berezkin V. E., Analiz i realizatsiya metodov approksimatsii paretovoi granitsy dlya nelineinykh sistem, VTs RAN, M., 2002
[23] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl
[24] Horst R., Pardalos P. M., Handbook on global optimization, Kluwer, Dordrecht, NL, 1995 | MR
[25] Zhiglyavskii A. A., Zhilinskas A. G., Metody poiska globalnogo ekstremuma, Nauka, M., 1991 | MR
[26] Berezkin V. E., Kamenev G. K., Lotov A. B., Realizatsiya metoda dostizhimykh tselei dlya nelineinykh modelei v MS Excel, VTs RAN, M., 2000
[27] Berezkin V. E., Eksperimenty po approksimatsii paretovoi granitsy dlya nelineinykh sistem, VTs RAN, M., 2005 | MR
[28] Laitinen E., Neittaanmaki P., “On numerical solution of the problem connected with the control of the secondary cooling in the continuous casting process”, Control Theory and Advances Techn., 4 (1988), 285–305 | MR
[29] Miettininen K., Makela M. M., Mannikko T., “Optimal control of continuous casting by nondifferentiable multiobjective optimization”, Comput. Optimizat. and Applic., 11 (1998), 177–194 | DOI | MR
[30] Lotov A., Berezkin V., Kamenev G., Miettinen K., “Optimal control of cooling process in continuous casting of steel using a visualization-based multi-criteria approach”, Appl. Math. Modelling, 29:7 (2005), 653–672 | DOI | Zbl