Real-time calculation of the current state estimates for a class of delay systems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 1972-1986 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear optimal observation problem is examined for one type of nonstationary delay system with an uncertainty in the initial state. A fast implementation of the dual method is proposed for calculating estimates of the initial state. This implementation is based on the quasi-reduction of the fundamental matrix of solutions to the mathematical model of delay systems. It is shown that an iteration step of the dual method only requires that auxiliary systems of ordinary differential equations be integrated on small time intervals. An algorithm is described for the real-time calculation of current state estimates. The results are illustrated by the optimal observation problem for a third-order stationary delay system.
@article{ZVMMF_2006_46_11_a4,
     author = {R. Gabasov and F. M. Kirillova and P. V. Makevich},
     title = {Real-time calculation of the current state estimates for a class of delay systems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1972--1986},
     year = {2006},
     volume = {46},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a4/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - F. M. Kirillova
AU  - P. V. Makevich
TI  - Real-time calculation of the current state estimates for a class of delay systems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1972
EP  - 1986
VL  - 46
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a4/
LA  - ru
ID  - ZVMMF_2006_46_11_a4
ER  - 
%0 Journal Article
%A R. Gabasov
%A F. M. Kirillova
%A P. V. Makevich
%T Real-time calculation of the current state estimates for a class of delay systems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1972-1986
%V 46
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a4/
%G ru
%F ZVMMF_2006_46_11_a4
R. Gabasov; F. M. Kirillova; P. V. Makevich. Real-time calculation of the current state estimates for a class of delay systems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 1972-1986. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a4/

[1] Krasovskii H. H., Teoriya upravleniya dvizheniem, Nauka, M., 1968

[2] Gabasov R., Kirillova F. M., “Soyuznye zadachi upravleniya, nablyudeniya i identifikatsii”, Dokl. AN Belarusi, 34:9 (1990), 777–780 | MR | Zbl

[3] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe nablyudenie za nestatsionarnymi dinamicheskimi sistemami”, Izv. RAN. Teoriya i sistemy upravleniya, 2002, no. 2, 35–46 | MR

[4] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe upravlenie mnogomernymi sistemami po netochnym izmereniyam ikh vykhodnykh signalov”, Tr. In-ta matem. i mekhan., 10, no. 2, UrO RAN, Ekaterinburg, 2004, 35–57 | MR

[5] Gabasov R., Kirillova F. M., Yarmosh O. P., “Optimalnoe upravlenie sistemami s zapazdyvaniem”, Dokl. HAH Belarusi, 49:6 (2005), 36–42 | MR

[6] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii. Ch. 1. Lineinye zadachi, Universitetskoe, Minsk, 1984 | MR

[7] Gabasov R., Kirillova F. M., Prischepova S. V., Optimal feedback control, Lect. Notes in Control and Information Sci., 207, Springer, London, 1995 | MR | Zbl

[8] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[9] Manitius A., “Feedback controllers for a wind tunnel model involving a delay: Analytical design and numerical simulation”, IEEE Trans. Automat. Control, 29:12 (1984), 1058–1068 | DOI | MR

[10] Manitius A., Tran H., “Numerical simulation of a nonlinear feedback controller for a wind tunnel model involving a time delay”, Optimal Control Applic. and Meth., 7 (1986), 19–39 | DOI | Zbl