Study of vortex breakdown in a stratified fluid
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2081-2098 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analysis shows that nonsmooth solutions have to be considered. Weak solutions to the Euler equations describing an incompressible stratified fluid under gravity are defined and studied. The study makes use of a wave energy functional proposed for the nonlinear equations. It is shown that the Euler equations are insufficient for stating a well-posed generalized problem. Additional conditions based on physical considerations are proposed. One condition is energy conservation, and the other is a constraint imposed on the density, which is required for stability. A numerical method is developed that is used to analyze how wave breakdown in a stratified fluid depends on stratification. The numerical results are in satisfactory agreement with experiments.
@article{ZVMMF_2006_46_11_a12,
     author = {S. P. Kshevetskii},
     title = {Study of vortex breakdown in a~stratified fluid},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2081--2098},
     year = {2006},
     volume = {46},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a12/}
}
TY  - JOUR
AU  - S. P. Kshevetskii
TI  - Study of vortex breakdown in a stratified fluid
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 2081
EP  - 2098
VL  - 46
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a12/
LA  - ru
ID  - ZVMMF_2006_46_11_a12
ER  - 
%0 Journal Article
%A S. P. Kshevetskii
%T Study of vortex breakdown in a stratified fluid
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 2081-2098
%V 46
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a12/
%G ru
%F ZVMMF_2006_46_11_a12
S. P. Kshevetskii. Study of vortex breakdown in a stratified fluid. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2081-2098. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a12/

[1] Kshevetskii S. P., “Analytical and numerical investigation of nonlinear internal gravity waves”, Nonlinear Proc. Geophys., 8 (2001), 37–53 | DOI

[2] Miropolskii Yu. Z., Dinamika vnutrennikh gravitatsionnykh voln v okeane, Gidrometeoizdat, L., 1981

[3] Ablovits M., Sigur X., Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR

[4] Pfister L., Starr W., Craig R. et al., “Small-scale motions observer by aircraft in the tropical lower stratosphere: evidence for mixing and its relationship to large-scale flows”, J. Atmos. Sci., 43:24 (1986), 3210–3225 | 2.0.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[5] Silva I. P. D. De, Imberger J., Ivey G. N., “Localized mixing due to a breaking internal wave ray at a sloping bed”, J. Fluid Mech., 350 (1997), 1–27 | DOI | MR

[6] Silva I. P. D. De, Fernando H. J. S., “Experement on collapsing turbulent regions in stratified fluid”, J. Fluid Mech., 358 (1998), 29–60 | DOI

[7] Mason D. M., Kerswell R., “Nonlinear evolution of the elliptical instability: an example of internal wave breakdown”, J. Fluid Mech., 396 (1999), 73–108 | DOI | MR | Zbl

[8] McEwan A. D., “Degeneration of resonantly-excited standing internal gravity waves”, J. Fluid Mech., 50 (1971), 431–448 | DOI | Zbl

[9] McEwan A. D., “The kinematics of stratified mixing through internal wavebreaking”, J. Fluid Mech., 128 (1983), 47–57 | DOI

[10] Zhmaylo V. A., Sinkova O. G., Sofronov V. N. et al., “Numerical study of gravitational turbulent mixing in alternating-sign acceleration”, Parallel Comput. Fluid Dynamics. Advanced Numer. Meth. and Applic., Elsevier, 2004, 235–241 | Zbl

[11] Tishkin V. F., Zmitrenko N. V., Ladonkina M. Ye. et al., “A study of a gravity-gradient mixing properties by the means of a direct numerical modelling”, Advanced Numer. Meth. and Applic., Elsevier, 2004, 197–204 | Zbl

[12] Gabov C. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1990 | MR

[13] Gabov C. A., Sveshnikov A. G., Zadachi dinamiki stratifitsirovannykh zhidkostei, Nauka, M., 1986 | MR

[14] Garipov R. M., “On linear theory of gravity waves: the theorem of existence and uniqueness”, Arch. Ration. Mech. and Analys., 24:5 (1967), 352–362 | MR | Zbl

[15] Gabov C. A., Sveshnikov A. G., “O nekotorykh zadachakh, svyazannykh s kolebaniyami stratifitsirovannykh zhidkostei”, Differents. ur-niya, 18:7 (1982), 1150–1156 | MR

[16] Gabov S. A., Malysheva E. Yu., Sveshnikov A. G., Shatov A. K., “O nekotorykh uravneniyakh, voznikayuschikh v dinamike vraschayuscheisya, stratifitsirovannoi i szhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 24:12 (1984), 1850–1863 | MR

[17] Kopachevskii N. D., Temnov A. N., “Svobodnye kolebaniya idealnoi stratifitsirovannoi zhidkosti v sosude”, Zh. vychisl. matem. i matem. fiz., 24:1 (1984), 109–123 | MR

[18] Kopachevskii N. D., Temnov A. N., “Kolebaniya stratifitsirovannoi zhidkosti v basseine proizvolnoi formy”, Zh. vychisl. matem. i matem. fiz., 26:5 (1986), 734–755 | MR

[19] Gabov S. A., “O teorii vnutrennikh voln pri nalichii svobodnoi poverkhnosti”, Zh. vychisl. matem. i matem. fiz., 28:3 (1988), 335–345 | MR | Zbl

[20] Zeitunyan R. Kh., “Korrektnost zadach dinamiki zhidkostei (gidrodinamicheskaya tochka zreniya)”, Uspekhi matem. nauk, 54 (1999), 3–92 | MR

[21] Fletcher C. A. J., Computational Galerkin methods, Springer, New York, 1984 | MR

[22] Lax P. D., “Weak solutions of nonlinear hyperbolic equations and their numerical computation”, Communs. Pure and Appl. Math., 7 (1954), 159–193 | DOI | MR | Zbl

[23] Lax P. D., “Hyperbolic systems of conservation laws. II”, Communs. Pure and Appl. Math., 10 (1957), 537–566 | DOI | MR | Zbl

[24] Richtmayer R. D., Principles of advanced mathematical physics, v. 1, Springer, New York, 1978

[25] Richtmayer R. D., Morton K. W., Difference methods for initial-value problems, Intersci. Publ., New York, 1967

[26] Neumann J., Richtmyer R., “A method for numerical calculation of hydrodynamic shocks”, J. Appl. Phys., 21 (1950), 232–237 | DOI | MR | Zbl

[27] Monin A. C., Teoreticheskie osnovy geofizicheskoi gidrodinamiki, Gidrometeoizdat, L., 1988

[28] Landau L. D., Lifshits E. M., Teoreticheskaya fizika, v. 6, Gidrodinamika, Nauka, M., 1988

[29] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[30] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[31] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[32] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl