Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2045-2064 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In an unbounded (with respect to $x$ and $t$) domain (and in domains that can be arbitrarily large), an initial-boundary value problem for singularly perturbed parabolic reaction-diffusion equations with the perturbation parameter $\varepsilon^2$ multiplying the higher order derivative is considered. The parameter $\varepsilon$ takes arbitrary values in the half-open interval (0, 1]. To solve this problem, difference schemes on grids with an infinite number of nodes (formal difference schemes) are constructed that converge $\varepsilon$-uniformly in the entire unbounded domain. To construct these schemes, the classical grid approximations of the problem on the grids that are refined in the boundary layer are used. Schemes on grids with a finite number of nodes (constructive difference schemes) are also constructed for the problem under examination. These schemes converge for fixed values of $\varepsilon$ in the prescribed bounded subdomains that can expand as the number of grid points increases. As $\varepsilon\to0$, the accuracy of the solution provided by such schemes generally deteriorates and the size of the subdomains decreases. Using the condensing grid method, constructive difference schemes that converge $\varepsilon$-uniformly are constructed. In these schemes, the approximation accuracy and the size of the prescribed subdomains (where the schemes are convergent) are independent of $\varepsilon$ and the subdomains may expand as the number of nodes in the underlying grids increases.
@article{ZVMMF_2006_46_11_a10,
     author = {G. I. Shishkin},
     title = {Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2045--2064},
     year = {2006},
     volume = {46},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a10/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 2045
EP  - 2064
VL  - 46
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a10/
LA  - ru
ID  - ZVMMF_2006_46_11_a10
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 2045-2064
%V 46
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a10/
%G ru
%F ZVMMF_2006_46_11_a10
G. I. Shishkin. Grid approximation of singularly perturbed parabolic reaction-diffusion equations on large domains with respect to the space and time variables. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 11, pp. 2045-2064. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_11_a10/

[1] Bakhvalov I. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[3] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Scient., Singapore, 1996 | MR

[6] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convectiondiffusion and flow problems, Springer, Berlin, 1996 | MR

[7] Farrell P. A., Hegartx A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall/CRC, Boca Ration, 2000 | MR | Zbl

[8] Shishkin G. I., “Setochnaya approksimatsiya ellipticheskikh uravnenii konvektsii-diffuzii v neogranichennoi oblasti pri nalichii razlichnykh tipov pogranichnykh sloev”, Dokl. RAN, 392:4 (2003), 452–456 | MR | Zbl

[9] Shishkin G. I., Discrete approximation of multiscale problems: elliptic equations in an unbounded domain in the presence of boundary layers of different types, Internat. Conf. Boundary and Interior Layers – Comput. and Asymptotic Methods BAIL 2004, ONERA. Toulouse, 5th–9th July, 2004, 383–396 pp.

[10] Shishkin G. I., “Setochnaya approksimatsiya na poluploskosti singulyarno vozmuschennykh ellipticheskikh uravnenii s konvektivnymi chlenami, rastuschimi na beskonechnosti”, Zh. vychisl. matem. i matem. fiz., 45:2 (2005), 298–314 | MR | Zbl

[11] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1989 | MR

[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[13] Bakhvalov N. S., Chislennye metody, Nauka, M., 1973 | MR | Zbl

[14] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[15] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[16] Ladyzhenskaya O. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR