Chaos phenomena in a circle of three unidirectionally connected oscillators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1809-1821 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for designing chaotic oscillators. Mathematically, three so-called partial oscillators $S_j$ ($j=1,2,3$) are chosen, each of which is modeled by a nonlinear system of ordinary differential equations with a single attractor—an equilibrium or a cycle (the case $S_1=S_ 2=S_3$ is not excluded). It is shown that, when unidirectionally connected in a circle of the form однонаправленно связанными в кольцо вида $$ \xymatrix{ &S_1\ar[rd]& \\ S_3\ar[ru]&&S_2\ar[ll] } $$ with suitably chosen parameters, these oscillators can exhibit a joint chaotic behavior.
@article{ZVMMF_2006_46_10_a9,
     author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
     title = {Chaos phenomena in a~circle of three unidirectionally connected oscillators},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1809--1821},
     year = {2006},
     volume = {46},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/}
}
TY  - JOUR
AU  - S. D. Glyzin
AU  - A. Yu. Kolesov
AU  - N. Kh. Rozov
TI  - Chaos phenomena in a circle of three unidirectionally connected oscillators
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1809
EP  - 1821
VL  - 46
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/
LA  - ru
ID  - ZVMMF_2006_46_10_a9
ER  - 
%0 Journal Article
%A S. D. Glyzin
%A A. Yu. Kolesov
%A N. Kh. Rozov
%T Chaos phenomena in a circle of three unidirectionally connected oscillators
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1809-1821
%V 46
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/
%G ru
%F ZVMMF_2006_46_10_a9
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Chaos phenomena in a circle of three unidirectionally connected oscillators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1809-1821. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/

[1] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR

[2] Migulin V. V., Medvedev V. I., Mustel E. R., Parygin V. N., Osnovy teorii kolebanii, Nauka, M., 1988

[3] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004

[4] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991 | MR

[5] http://tracer3.narod.ru

[6] Kuznetsov S. P., Dinamicheskii khaos. Kurs lektsii, Fizmatlit, M., 2001

[7] Dmitriev A. C., Panas A. I., Dinamicheskii khaos: novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002