Chaos phenomena in a circle of three unidirectionally connected oscillators
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1809-1821
Cet article a éte moissonné depuis la source Math-Net.Ru
A method is proposed for designing chaotic oscillators. Mathematically, three so-called partial oscillators $S_j$ ($j=1,2,3$) are chosen, each of which is modeled by a nonlinear system of ordinary differential equations with a single attractor—an equilibrium or a cycle (the case $S_1=S_ 2=S_3$ is not excluded). It is shown that, when unidirectionally connected in a circle of the form однонаправленно связанными в кольцо вида $$ \xymatrix{ &S_1\ar[rd]& \\ S_3\ar[ru]&&S_2\ar[ll] } $$ with suitably chosen parameters, these oscillators can exhibit a joint chaotic behavior.
@article{ZVMMF_2006_46_10_a9,
author = {S. D. Glyzin and A. Yu. Kolesov and N. Kh. Rozov},
title = {Chaos phenomena in a~circle of three unidirectionally connected oscillators},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1809--1821},
year = {2006},
volume = {46},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/}
}
TY - JOUR AU - S. D. Glyzin AU - A. Yu. Kolesov AU - N. Kh. Rozov TI - Chaos phenomena in a circle of three unidirectionally connected oscillators JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 1809 EP - 1821 VL - 46 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/ LA - ru ID - ZVMMF_2006_46_10_a9 ER -
%0 Journal Article %A S. D. Glyzin %A A. Yu. Kolesov %A N. Kh. Rozov %T Chaos phenomena in a circle of three unidirectionally connected oscillators %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 1809-1821 %V 46 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/ %G ru %F ZVMMF_2006_46_10_a9
S. D. Glyzin; A. Yu. Kolesov; N. Kh. Rozov. Chaos phenomena in a circle of three unidirectionally connected oscillators. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1809-1821. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a9/
[1] Khessard B., Kazarinov N., Ven I., Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR
[2] Migulin V. V., Medvedev V. I., Mustel E. R., Parygin V. N., Osnovy teorii kolebanii, Nauka, M., 1988
[3] Kolesov A. Yu., Rozov N. Kh., Invariantnye tory nelineinykh volnovykh uravnenii, Fizmatlit, M., 2004
[4] Bibikov Yu. N., Mnogochastotnye nelineinye kolebaniya i ikh bifurkatsii, Izd-vo LGU, L., 1991 | MR
[6] Kuznetsov S. P., Dinamicheskii khaos. Kurs lektsii, Fizmatlit, M., 2001
[7] Dmitriev A. C., Panas A. I., Dinamicheskii khaos: novye nositeli informatsii dlya sistem svyazi, Fizmatlit, M., 2002