An iterative regularization method for the 2-constrained pseudoinversion of an operator equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1735-1743 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An iterative regularization algorithm is proposed for solving a special optimization problem, the so-called 2-constrained operator pseudoinversion. The convergence of the algorithm is examined in the case of perturbed input data. An error estimate is derived, and an a priori choice of the regularization parameters is described. The algorithm is applied to an optimal control problem with minimal costs.
@article{ZVMMF_2006_46_10_a2,
     author = {V. E. Uvarov and R. A. Shafiev},
     title = {An iterative regularization method for the 2-constrained pseudoinversion of an operator equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1735--1743},
     year = {2006},
     volume = {46},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a2/}
}
TY  - JOUR
AU  - V. E. Uvarov
AU  - R. A. Shafiev
TI  - An iterative regularization method for the 2-constrained pseudoinversion of an operator equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1735
EP  - 1743
VL  - 46
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a2/
LA  - ru
ID  - ZVMMF_2006_46_10_a2
ER  - 
%0 Journal Article
%A V. E. Uvarov
%A R. A. Shafiev
%T An iterative regularization method for the 2-constrained pseudoinversion of an operator equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1735-1743
%V 46
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a2/
%G ru
%F ZVMMF_2006_46_10_a2
V. E. Uvarov; R. A. Shafiev. An iterative regularization method for the 2-constrained pseudoinversion of an operator equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1735-1743. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a2/

[1] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[2] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[3] Arkharov E. V., Shafiev P. A., “Metody regulyarizatsii zadachi svyazannogo psevdoobrascheniya s priblizhennymi dannymi”, Zh. vychisl. matem. i matem. fiz., 43:3 (2003), 347–353 | MR | Zbl

[4] Shafiev P. A., Psevdoobraschenie operatorov i nekotorye prilozheniya, Elm, Baku, 1989 | MR

[5] Yastrebova I. Yu., Normalnoe $n$-svyaznoe psevdoreshenie uravneniya i regulyarnye metody ego, Dep. v VINITI 17.11.99, No 3388-V99, Nizhegorodskii gos. ped. un-t, N. Novgorod, 1999

[6] Sadovnichii V. A., Teoriya operatorov, Izd. 3-e, Vyssh. shkola, M., 1999

[7] Minamide N., Nakamura K., “A restricted pseudoinverse and its application to constrained minima”, SIAM J. Appl. Math., 19 (1970), 167–177 | DOI | MR | Zbl