@article{ZVMMF_2006_46_10_a15,
author = {A. V. Volkov and S. V. Lyapunov},
title = {nvestigation of the efficiency of using numerical schemes of a~high order of accuracy for solving {Navier{\textendash}Stokes} and {Reynolds} equations on unstructured adapted grids},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1894--1907},
year = {2006},
volume = {46},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a15/}
}
TY - JOUR AU - A. V. Volkov AU - S. V. Lyapunov TI - nvestigation of the efficiency of using numerical schemes of a high order of accuracy for solving Navier–Stokes and Reynolds equations on unstructured adapted grids JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2006 SP - 1894 EP - 1907 VL - 46 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a15/ LA - ru ID - ZVMMF_2006_46_10_a15 ER -
%0 Journal Article %A A. V. Volkov %A S. V. Lyapunov %T nvestigation of the efficiency of using numerical schemes of a high order of accuracy for solving Navier–Stokes and Reynolds equations on unstructured adapted grids %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2006 %P 1894-1907 %V 46 %N 10 %U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a15/ %G ru %F ZVMMF_2006_46_10_a15
A. V. Volkov; S. V. Lyapunov. nvestigation of the efficiency of using numerical schemes of a high order of accuracy for solving Navier–Stokes and Reynolds equations on unstructured adapted grids. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1894-1907. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a15/
[1] Venkatakrishnan V., Allmaras S. R., Kamenetskij D. S., Johnson F. T., Higher order schemes for the compressible Navier–Stokes equations, AIAA-2003-3987
[2] Hughes T. J. R., Brooks A., “A multidimensional upwind scheme with no crosswind diffusion”, Finite Element Meth. Convection Dominated Flows, ASME, New York, 1979 | MR | Zbl
[3] Lesaint P., Raviart P. A., “On a finite element method to solve the neutron transport equation”, Math. Aspects Finite Elements in Partial Differential Equations, Acad. Press, New York, 1974, 89–123 | MR
[4] Cokburn B., “Discontinuous Galerkin methods for convection-dominated problems”, High-Order Meth. Comput. Phys., Lect. Notes Comput. Sci. Eng, 9, Springer, Berlin, 1999, 69–224 | MR
[5] Spalart P. R., Allmaras S. R., A One-equation turbulent model for aerodynamic flows, AIAA-92-0439
[6] Bassi F., Rebay S., “A High-order accurate discontinuous finite element method for numerical solution of the compressible Navier–Stokes equations”, J. Comput. Phys., 131 (1997), 267–279 | DOI | MR | Zbl
[7] Roe P. L., “Approximate Riemann solvers, parameter vectors, and difference schemes”, J. Comput. Phys., 43 (1981), 357–372 | DOI | MR | Zbl
[8] Osher S., Solomon F., “Upwind difference schemes for hyperbolic systems of conservation laws”, Math. Comput., 38:158 (1982), 339–374 | DOI | MR | Zbl
[9] Cockburn B., Hou S., Shu C., “TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case”, Math. Comput., 54 (1990), 545–581 | DOI | MR | Zbl
[10] http://www.mcs.anl.gov/petsc
[11] Martynov A. A., Medvedev S. Yu., “A robust method of anisotropic grid generator”, Workshop “Grid Generation: theory and applications” (Moscow, June 24–28, 2002), Comput. Center Russian Acad. Sci. http://www.ccas.ru/gridgen/ggta02/.index.html
[12] Johnson D. A., Bachalo W. D., “Transonic flow past a symmetrical airfoil – in viscid and turbulent flow properties”, AIAA J., 18:1 (1980), 16–24 | DOI
[13] Chin V. D., Peters D. W., Spaid F. W., McGhee R. J., Flowfield measurements about a multi-element airfoil at high Reynolds numbers, AIAA-93-3137