Thermodynamically conditioned splitting schemes in combustion problems
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1838-1852 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Algorithms for solving the two-dimensional combustion problem for premixed flames are proposed and examined. The solution method is based on splitting into convective and diffusion parts according to the processes involved. A high-resolution explicit quasi-monotone scheme with flux correction is used for the hyperbolic part. For the parabolic part, the scheme is conservative and the source in the heat equation is set to be positive; i.e., the scheme ensures that the different thermodynamic consequences of the original equations hold; therefore, the scheme is thermodynamically conditioned. The applicability of the scheme to the full and purely gasdynamic problems is examined under various types of initial conditions and with various flux limiters. Numerical results are presented for one-and two-dimensional problems, including the Frank-Kamenetskii classical problem in two dimensions. The flame is shown to become turbulent in sufficiently wide pipes.
@article{ZVMMF_2006_46_10_a11,
     author = {M. Yu. Zaslavsky and D. Yu. Maksimov and A. Kh. Pergament},
     title = {Thermodynamically conditioned splitting schemes in combustion problems},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1838--1852},
     year = {2006},
     volume = {46},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a11/}
}
TY  - JOUR
AU  - M. Yu. Zaslavsky
AU  - D. Yu. Maksimov
AU  - A. Kh. Pergament
TI  - Thermodynamically conditioned splitting schemes in combustion problems
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1838
EP  - 1852
VL  - 46
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a11/
LA  - ru
ID  - ZVMMF_2006_46_10_a11
ER  - 
%0 Journal Article
%A M. Yu. Zaslavsky
%A D. Yu. Maksimov
%A A. Kh. Pergament
%T Thermodynamically conditioned splitting schemes in combustion problems
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1838-1852
%V 46
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a11/
%G ru
%F ZVMMF_2006_46_10_a11
M. Yu. Zaslavsky; D. Yu. Maksimov; A. Kh. Pergament. Thermodynamically conditioned splitting schemes in combustion problems. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1838-1852. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a11/

[1] Barenblatt G. I., Zeldovich Ya. B., Istratov A. G., “O diffuzionno-teplovoi ustoichivosti laminarnogo plameni”, Prikl. mekhan. i tekhn. fiz., 2:4 (1962), 21–26

[2] Istratov A. G., Librovich V. B., “Gidrodinamicheskaya ustoichivost sfericheskogo plameni”, Dokl. AN SSSR, 168:1 (1966), 43–46

[3] Bychkov V. V., Golberg S. M., Liberman M. A., “Self-consistent model of the Rayleigh–Taylor instability in ablatively accelerated laser plasma”, Phys. Plasmas, 1:9 (1994), 2976–2986 | DOI

[4] Bychkov V. V., Liberman M. A., “Dynamics and stability of premixed flames”, Phys. Rept., 325:4–5 (2000), 115–237 | DOI | MR

[5] Zaslavskii M. Yu., Pergament A. X., Plyuschenkov B. D., Dinamika i ustoichivost odnomernykh zadach goreniya, Preprint No 21, IPMatem. RAN, M., 2002

[6] Belotserkovskii O. M., Guschin V. A., Schennikov V. V., “Metod rasschepleniya v primenenii k resheniyu zadachi dinamiki vyazkoi neszhimaemoi zhidkosti”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 197–207 | MR

[7] Belotserkovskii O. M., Guschin V. A., Konshin V. N., “Metod rasschepleniya dlya issledovaniya techenii stratifitsirovannoi zhidkosti so svobodnoi poverkhnostyu”, Zh. vychisl. matem. i matem. fiz., 27:4 (1987), 594–609 | MR

[8] Demyanov A. Yu., Povedenie nyutonovskikh kharakteristik v zadache perekhoda goreniya v detonatsiyu, XLIV nauchn. konf. MFTI, 2001

[9] Liberman M. A., Bychkov V. V., Golberg S. M., Eriksson L. E., “Numerical study of curved flames under confinement”, Combustion Sci. and Technol., 136:1 (1998), 221–251 | DOI

[10] Radvogin Yu. B., Kvazimonotonnye mnogomernye raznostnye skhemy vtorogo poryadka, Preprint No 19, IPMatem. AN SSSR, M., 1991

[11] Radvogin Yu. B., Zaitsev N. A., Multidimensional minimal stencil supported second order accurate upwind schemes for solving hyperbolic and Euler systems, Preprint, No 22 KIAM, RAS, 1996 | Zbl

[12] Harten A., Osher S., Engquist B., Chakravarthy S. R., “Some results on uniformly high-order accurate essentially nonoscillatory schemes”, Appl. Numer. Math., 2:3–5 (1986), 347–376 | DOI | MR

[13] Sweby P. K., “High resolution schemes using flux limiters for hyperbolic conservation laws”, SIAM J. Numer. Analys., 21 (1984), 995–1011 | DOI | MR | Zbl

[14] Evans L. K., Uravneniya s chastnymi proizvodnymi, Tamara Rozhkovskaya, Novosibirsk, 2003

[15] Pergament A. Kh., Popov S. B., Yambaev M. F., Yepishin V. D., The thermodynamically conditioned difference schemes for multi-phase flow, Proc. 9th Euro. Conf. Math. Oil Recov. August–September 2004. Cannes, France, P007

[16] Harten A., “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:3 (1983), 357–393 | DOI | MR | Zbl

[17] Kulikovskii A. G., Pogorelov H. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh uravnenii i sistem, Fizmatlit, M., 2001

[18] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[19] Maksimov D.Yu., Pergament A.Kh., Plyuschenkov B.D., O nekotorykh skhemakh rasschepleniya v zadachakh gazodinamiki s teploprovodnostyu, Preprint No 70, IPMatem. RAN, M., 2005

[20] Zaslavskii M. Yu., Maksimov D. Yu., Polozhitelnaya po temperature konservativnaya raznostnaya skhema dlya zadach goreniya, Preprint No 4, IPMatem. RAN, M., 2006