Minimization methods for approximating tensors and their comparison
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1725-1734 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Application of various minimization methods to trilinear approximation of tensors is considered. These methods are compared based on numerical calculations. For the Gauss–Newton method, an efficient implementation is proposed, and the local rate of convergence is estimated for the case of completely symmetric tensors.
@article{ZVMMF_2006_46_10_a1,
     author = {I. V. Oseledets and D. V. Savostyanov},
     title = {Minimization methods for approximating tensors and their comparison},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1725--1734},
     year = {2006},
     volume = {46},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a1/}
}
TY  - JOUR
AU  - I. V. Oseledets
AU  - D. V. Savostyanov
TI  - Minimization methods for approximating tensors and their comparison
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2006
SP  - 1725
EP  - 1734
VL  - 46
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a1/
LA  - ru
ID  - ZVMMF_2006_46_10_a1
ER  - 
%0 Journal Article
%A I. V. Oseledets
%A D. V. Savostyanov
%T Minimization methods for approximating tensors and their comparison
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2006
%P 1725-1734
%V 46
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a1/
%G ru
%F ZVMMF_2006_46_10_a1
I. V. Oseledets; D. V. Savostyanov. Minimization methods for approximating tensors and their comparison. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 46 (2006) no. 10, pp. 1725-1734. http://geodesic.mathdoc.fr/item/ZVMMF_2006_46_10_a1/

[1] Harshman R. A., “Foundations of the Parafac procedure: Models and conditions for an explanatory multimodal factor analysis”, UCLA Working Papers in Phonetics, 16 (1970), 1–84

[2] Comon P., “Tensor decomposition: State if the art and applications”, IMA Conf. Math. Signal Proc. (Warwick, UK, Dec. 18–20, 2000) http://www.i3s.fr/~comon/FichiersPs/ima2000.ps

[3] Ibraghimov I., “Application of the three-way decomposition for matrix compression”, Numer. Linear Algebra Appl., 9:6–7 (2002), 551–565 | DOI | MR | Zbl

[4] Caroll J. D., Chang J. J., “Analysis of individual differences in multidimensional scaling via $n$-way generalization of Eckart–Young decomposition”, Psychometrica, 35 (1970), 283–319 | DOI

[5] Bro R., “PARAFAC: Tutorial and applications”, Chemom. Intel. Lab. Systems, 38 (1997), 149–171 | DOI

[6] Wang J.-H., Hopke P. K., Hancewicz T. M., Zhang S. L., “Application of modified least squares regression to spectroscopic image analysis”, Analys. Chim. Acta, 476 (2003), 93–109 | DOI

[7] Dedieu J. P., Schub M., “Newton's method for overdetermined systems of equations”, Math. Comput., 69:281 (2000), 1099–1115 | MR | Zbl

[8] Zhang T., Golub G. H., “Rank-one approximation to high-order tensors”, SIAM J. Matrix Analys. Appl., 23 (2001), 534–550 | DOI | MR | Zbl

[9] Nielsen H. B., Damping parameter in Marquardts method, Inform. Math. Modelling, Denmark, 1999 http://www.imm.dtu.dk/~hbn/publ/TR9905.ps

[10] Tucker L. R., “Some mathematical notes on three-mode factor analysis”, Psychometrica, 31 (1966), 279–311 | DOI | MR

[11] Oseledets I. V., Savostyanov D. V., “Bystryi algoritm dlya odnovremennogo privedeniya matrits k treugolnomu vidu i approksimatsii tenzorov”, Matrichnye metody i tekhnologii resheniya bolshikh zadach, IVM RAN, M., 2005, 101–116

[12] Oseledets I. V., Savostyanov D. V., “Metody razlozheniya tenzora”, Matrichnye metody i tekhnologii resheniya bolshikh zadach, IVM RAN, M., 2005, 51–64