Resonances and trapped modes in a quantum waveguide
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1630-1638 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of the eigenfunctions of the continuous spectrum of a self-adjoint differential second-order operator in a cylinder are investigated. It is proved that the eigenfunctions of the continuous spectrum are analytic with respect to the spectral parameter near the eigenvalues embedded in the continuous spectrum, and any eigenvalue embedded in the continuous spectrum is a removable singular point for the corresponding eigenfunctions.
@article{ZVMMF_2005_45_9_a9,
     author = {A. A. Arsen'ev},
     title = {Resonances and trapped modes in a quantum waveguide},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1630--1638},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a9/}
}
TY  - JOUR
AU  - A. A. Arsen'ev
TI  - Resonances and trapped modes in a quantum waveguide
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1630
EP  - 1638
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a9/
LA  - ru
ID  - ZVMMF_2005_45_9_a9
ER  - 
%0 Journal Article
%A A. A. Arsen'ev
%T Resonances and trapped modes in a quantum waveguide
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1630-1638
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a9/
%G ru
%F ZVMMF_2005_45_9_a9
A. A. Arsen'ev. Resonances and trapped modes in a quantum waveguide. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1630-1638. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a9/

[1] Goldstein C. I., “Eigenfunction Expansions assosiated with the Laplacian for certain domains with infinite boundaries, I”, TAMS, 135 (1969), 1–35 | DOI | MR

[2] Goldstein C. I., “Eigenfunction Expansions assosiated with the Laplacian for certain domains with infinite boundaries. II: Applications to scattering theory”, TAMS, 135 (1969), 33–50 | DOI | MR | Zbl

[3] Kalvin B. O., Neittaanmyaki P., Plamenevskii B. A., “O sguschenii tochechnogo spektra ellipticheskikh kraevykh zadach v oblastyakh s tsilindricheskimi kontsami”, Dokl. RAN, 394:5 (2004), 586–588 | MR | Zbl

[4] Edward J., “Eigenfunction decay and accumulation for the Laplacian on asymptotically perturbed waveguides”, J. London Math. Soc., 59:2 (1999), 620–636 | DOI | MR | Zbl

[5] Christiansen T., Zworski M., “Spectral asymptotics for manifolds with cylindrical ends”, Ann. Inst. Fourier, Grenoble, 45 (1995), 251–263 | MR | Zbl

[6] Christiansen T., “Scattering theory for manifolds with cylindrical ends”, J. Funct. Analyt., 131:2 (1995), 499–530 | DOI | MR | Zbl

[7] Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Mir, M., 1986

[8] Christiansen T., “Some upper bounds on the number of resonances for manifolds with infinite cylindrical ends”, Ann. Henri Poincare, 2002, no. 3, 895–920 | DOI | MR | Zbl

[9] Kalvine V. O., Self-adjoint elliptic problems in domains with cylindrical ends under weak assumptions on the stabilisation of coeffitients, arXiv: math-ph/0408017

[10] Arsenev A. A., “Rezonansnoe rasseyanie v kvantovykh volnovodakh”, Matem. sbornik, 194:1 (2003), 3–22 | MR

[11] Agmon S., “A perturbation theory of Resonances”, Commun. on Pure and Appl. Math., 61 (1998), 1255–1309 | 3.0.CO;2-O class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[12] Povzner A. Ya., “O razlozhenii proizvolnykh funktsii po sobstvennym funktsiyam operatora $-\Delta u+cu$”, Matem. sbornik, 32:1 (1953), 109–156 | MR | Zbl

[13] Shenk N., Thoe D., “Eigenfunction expansion and scattering theory for perturbations of $-\Delta$”, J. Matern. Analys. Appl., 36 (1971), 313–351 | DOI | MR | Zbl

[14] Parravicini G., Gorini V., Sudarshan E. C. G., “Resonances, scattering theory, and riggid Hilbert spaces”, J. Math. Phys., 21:8 (1980), 2208–2226 | DOI | MR | Zbl

[15] Castagnio M., Betan R. Id., Laura R., Liotta R. J., “Quantum decay processes and Gamov states”, J. Phys. A: Math. Gen., 35 (2002), 6055–6074 | DOI | MR

[16] Arsenev A. A., “Pravilo Fermi i rezonansy amplitudy rasseyaniya”, Teor. i matem. fiz., 134:3 (2003), 341–352 | MR

[17] Arsenev A. A., “Ob asimptotike energii, peredannoi pochti periodicheskim istochnikom kolebanii otkrytomu rezonatoru za bolshoe vremya”, Matem. sbornik, 195:3 (2004), 3–14 | MR

[18] Danford N., Shvarts Dzh., Lineinye operatory, v. 2, Spektralnye operatory, Mir, M., 1966

[19] Arsenev A. A., “Rezonansy v zadache rasseyaniya dlya operatora Shturma-Liuvillya”, Matem. sbornik, 3 (2000), 3–12 | MR

[20] Grikurov V. E., Scattering, trapped modes and guided waves in wave guides and diffraction gratings, arXiv: quant-ph/0406019