An asymptotic solution to the bounded plane circular three body problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1606-1629
Cet article a éte moissonné depuis la source Math-Net.Ru
The motion of a mass point in the gravitational field of two bodies traveling in circular orbits about their center of mass is considered. The mass ratio of the two bodies is equal to $\varepsilon\ll 1$. When the mass point passes close to the smaller mass, the character of its trajectory changes abruptly, and the trajectory asymptotics as $\varepsilon\to 0$ is complex. A uniform asymptotic expansion of the entire trajectory accurate to any power of $\varepsilon$ is constructed and validated. In particular, an algorithm is presented for finding the limiting turning angle of the trajectory after the mass point passes near the smaller mass.
@article{ZVMMF_2005_45_9_a8,
author = {A. E. El'bert},
title = {An asymptotic solution to the bounded plane circular three body problem},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1606--1629},
year = {2005},
volume = {45},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a8/}
}
TY - JOUR AU - A. E. El'bert TI - An asymptotic solution to the bounded plane circular three body problem JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1606 EP - 1629 VL - 45 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a8/ LA - ru ID - ZVMMF_2005_45_9_a8 ER -
A. E. El'bert. An asymptotic solution to the bounded plane circular three body problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1606-1629. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a8/
[1] Balk M. B., Elementy dinamiki kosmicheskogo poleta, Nauka, M., 1965
[2] Naumov A. L., Teoreticheskaya mekhanika, KGU, Kiev, 1956
[3] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR