Averaging algorithms and the support-operator method in elliptic problems with discontinuous coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1594-1605 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method is proposed for solving elliptic boundary value problems with discontinuous coefficients. The method is based on an approximation of the energy integral followed by the construction of a finite-difference scheme by varying the corresponding functionals. It is shown that the solution to the original problem can be approximated by an element of the linear span spanned by basis vectors reflecting the features of the solution: for span elements, the flux component normal to the boundary and the tangent component of the gradient are both continuous across the discontinuity. The expression for the energy functional is exact for span elements and approximates the energy integral for arbitrary solutions. Numerical grids can be structure-fitted (as in the support-operator method) or not structure-fitted (e.g., rectangular, as in the averaging method). The weak convergence of the algorithms is proved. A method is discussed for choosing the control volume associated with a mesh point so as to satisfy the approximation conditions on the faces of the volume. It is shown that such a volume can be constructed for two-dimensional problems, and strong convergence is proved for them.
@article{ZVMMF_2005_45_9_a7,
     author = {M. Yu. Zaslavsky and A. Kh. Pergament},
     title = {Averaging algorithms and the support-operator method in elliptic problems with discontinuous coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1594--1605},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a7/}
}
TY  - JOUR
AU  - M. Yu. Zaslavsky
AU  - A. Kh. Pergament
TI  - Averaging algorithms and the support-operator method in elliptic problems with discontinuous coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1594
EP  - 1605
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a7/
LA  - ru
ID  - ZVMMF_2005_45_9_a7
ER  - 
%0 Journal Article
%A M. Yu. Zaslavsky
%A A. Kh. Pergament
%T Averaging algorithms and the support-operator method in elliptic problems with discontinuous coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1594-1605
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a7/
%G ru
%F ZVMMF_2005_45_9_a7
M. Yu. Zaslavsky; A. Kh. Pergament. Averaging algorithms and the support-operator method in elliptic problems with discontinuous coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1594-1605. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a7/

[1] Samarskii A. A., Koldoba A. V., Poveschenko Yu. A. i dr., Raznostnye skhemy na neregulyarnykh setkakh, Nauka i Tekhnika, Minsk, 1996 | Zbl

[2] Babuska I., Caloz G., Osborn J. E., “Special finite element methods for a class of second order elliptic problems with rough coefficients”, SIAM J. Numer. Anal., 31:4 (1994), 945–981 | DOI | MR | Zbl

[3] Moskow S., Druskin V., Habashy T. et al., “A finite difference scheme for elliptic equations with rough coefficients using grids nonconforming to interfaces”, SIAM J. Numer. Analys., 36:2 (1999), 442–464 | DOI | MR

[4] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[5] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii osnovnykh differentsialnykh operatorov i nekotorykh granichnykh zadach”, Zh. vychisl. matem. i matem. fiz., 4 (1964), 449–465 | MR | Zbl

[6] Myasnikov V. P., Zaslavskii M. Yu., Pergament A. Kh., “Algoritmy osredneniya dlya resheniya zadach teorii uprugosti na pryamougolnykh setkakh, neadaptirovannykh k strukture sredy (averaging)”, Dokl. RAN, 327:3 (2004), 332–337 | MR

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[8] Goloviznin V. M., Samarskii A. A., Favorskii A. P., Ob approksimatsii variatsionno-raznostnykh uravnenii gidrodinamiki, Preprint No 34, IPM AN SSSR, M., 1977 | MR

[9] Favorskii A. P., “Variatsionno-diskretnye modeli uravnenii gidrodinamiki”, Differents. ur-niya, 26:7 (1980), 1317–1327