@article{ZVMMF_2005_45_9_a6,
author = {E. A. Volkov},
title = {On the convergence in $C^1_h$ of the difference solution to the {Laplace} equation in a rectangular parallelepiped},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1587--1593},
year = {2005},
volume = {45},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a6/}
}
TY - JOUR AU - E. A. Volkov TI - On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1587 EP - 1593 VL - 45 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a6/ LA - ru ID - ZVMMF_2005_45_9_a6 ER -
%0 Journal Article %A E. A. Volkov %T On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1587-1593 %V 45 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a6/ %G ru %F ZVMMF_2005_45_9_a6
E. A. Volkov. On the convergence in $C^1_h$ of the difference solution to the Laplace equation in a rectangular parallelepiped. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1587-1593. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a6/
[1] Wasow W., “On the truncation error in the solution of Laplace's equation by finite differences”, J. Res. Nat. Bur. Standards, 48:4 (1952), 345–348 | MR
[2] Volkov E. A., “On the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped by the grid method”, Russ. J. Numer. Anal. Math. Modelling, 16:6 (2001), 519–527 | MR | Zbl
[3] Lebedev V. I., “Otsenka pogreshnosti metoda setok dlya dvumernoi zadachi Neimana”, Dokl. AN SSSR, 132:5 (1960), 1016–1018 | Zbl
[4] Volkov E. A., “Approximation of the derivatives of the solution of the Dirichlet problem for the Laplace equation on a rectangular parallelepiped by the grid method”, Russ. J. Numer. Anal. Math. Modelling, 19:3 (2004) | DOI | MR
[5] Volkov E. A., “O differentsialnykh svoistvakh reshenii uravnenii Laplasa i Puassona na parallelepipede i effektivnykh otsenkakh pogreshnosti metoda setok”, Tr. MI AN SSSR, 105, 1969, 46–65 | Zbl
[6] Volkov E. A., “K voprosu o reshenii metodom setok vnutrennei zadachi Dirikhle dlya uravneniya Laplasa”, Vychislitelnaya matematika, 1, Izd-vo AN SSSR, 1957, 34–61
[7] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1976 | MR | Zbl
[8] Bakhvalov N. S., Zhidkov N. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl
[9] Volkov E. A., “On the grid method for solving the Dirichlet problem for the Laplace equation in a cylinder with lateral surface of class $C_{1, 1}$”, Russ. J. Numer. Anal. Math. Modelling, 15:6 (2000), 539–551 | DOI | MR
[10] Volkov E. A., “Effektivnyi metod kubicheskikh setok resheniya uravneniya Laplasa na parallelepipede pri razryvnykh granichnykh usloviyakh”, Tr. MI AN SSSR, 156 (1980), 30–46 | Zbl