On approximate projecting on a stable manifold
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1580-1586 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an element of a Banach space that belongs to a neighborhood of a fixed point of the given resolving operator, the problem of projecting on the corresponding stable manifold is examined. The projector is specified by a basis that describes the admissible modifications. The original problem is reduced to solving a nonlinear equation of a special form. Under the conventional assumptions, the solvability of this equation is proved. It is shown that the proposed method is locally equivalent to the well-known methods for approximating the stable manifold. The high efficiency of the method is demonstrated by the numerical experiments. Their results for the two-dimensional Chafe–Infant equation are presented.
@article{ZVMMF_2005_45_9_a5,
     author = {A. A. Kornev and A. V. Ozeritskii},
     title = {On approximate projecting on a stable manifold},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1580--1586},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/}
}
TY  - JOUR
AU  - A. A. Kornev
AU  - A. V. Ozeritskii
TI  - On approximate projecting on a stable manifold
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1580
EP  - 1586
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/
LA  - ru
ID  - ZVMMF_2005_45_9_a5
ER  - 
%0 Journal Article
%A A. A. Kornev
%A A. V. Ozeritskii
%T On approximate projecting on a stable manifold
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1580-1586
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/
%G ru
%F ZVMMF_2005_45_9_a5
A. A. Kornev; A. V. Ozeritskii. On approximate projecting on a stable manifold. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1580-1586. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/

[1] Anosov D. V., Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny, Trudy MIAN, 90, 1967 | MR

[2] Shilnikov L. P., Shilnikov A. L., Turaev D. V., Chua L., Metody kachestvennoi teorii nelineinykh sistem, v. 1, In-t kompyuternykh issledovanii, Moskva–Izhevsk, 2004

[3] Fursikov A. V., “Stabilizability of two-demensional Navier-Stokes equations with help of boundary feedback control”, J. Math. Fluid Mech., 2001 | MR

[4] Ladyzhenskaya O. A., Solonnikov V. A., “O printsipe linearizatsii invariantnykh mnogoobrazii dlya zadach magnitnoi gidrodinamiki”, Zap. nauchn. sem. LOMI, 38, 1973, 46–93 | Zbl

[5] Kostin I. N., “Rate of attractor to a non-hyperbolic attractor”, Asymptotic Analys., 1998, no. 16, 203–222 | MR | Zbl

[6] Fursikov A. B., “Realnye protsessy i realizuemost metoda stabilizatsii sistemy Nave-Stoksa posredstvom upravleniya s obratnoi svyazyu s granitsy oblasti”, Nelineinye zadachi matem. fiz. i smezhnye voprosy, Mezhdunarodnaya matem. seriya, v. 2, 2002, 127–164 | MR

[7] Lyapunov A. M., Sobr. soch., v. II, Obschaya zadacha ob ustoichivosti dvizheniya, Izd-vo AN SSSR, M.–L., 1954 | MR

[8] Kornev A. A., “Ob iteratsionnom metode postroeniya “usov Adamara””, Zh. vychisl. matem. i matem. fiz., 44:8 (2004), 1346–1355 | MR | Zbl