On approximate projecting on a stable manifold
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1580-1586

Voir la notice de l'article provenant de la source Math-Net.Ru

For an element of a Banach space that belongs to a neighborhood of a fixed point of the given resolving operator, the problem of projecting on the corresponding stable manifold is examined. The projector is specified by a basis that describes the admissible modifications. The original problem is reduced to solving a nonlinear equation of a special form. Under the conventional assumptions, the solvability of this equation is proved. It is shown that the proposed method is locally equivalent to the well-known methods for approximating the stable manifold. The high efficiency of the method is demonstrated by the numerical experiments. Their results for the two-dimensional Chafe–Infant equation are presented.
@article{ZVMMF_2005_45_9_a5,
     author = {A. A. Kornev and A. V. Ozeritskii},
     title = {On approximate projecting on a stable manifold},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1580--1586},
     publisher = {mathdoc},
     volume = {45},
     number = {9},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/}
}
TY  - JOUR
AU  - A. A. Kornev
AU  - A. V. Ozeritskii
TI  - On approximate projecting on a stable manifold
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1580
EP  - 1586
VL  - 45
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/
LA  - ru
ID  - ZVMMF_2005_45_9_a5
ER  - 
%0 Journal Article
%A A. A. Kornev
%A A. V. Ozeritskii
%T On approximate projecting on a stable manifold
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1580-1586
%V 45
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/
%G ru
%F ZVMMF_2005_45_9_a5
A. A. Kornev; A. V. Ozeritskii. On approximate projecting on a stable manifold. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1580-1586. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a5/