On a method for solving the nonlinear eigenvalue problem for a differential algebraic system of equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1575-1579 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For a linear differential algebraic system of equations, a method for determining the number of eigenvalues in a neighborhood of a given complex scalar is proposed and examined. It is assumed that the coefficients of the system and the entries in the matrices of the boundary conditions depend analytically on the spectral parameter. Constructions typical for the argument principle are employed, although the functions arising in the proposed method are not analytic.
@article{ZVMMF_2005_45_9_a4,
     author = {A. A. Abramov and V. I. Ul'yanova and L. F. Yukhno},
     title = {On a method for solving the nonlinear eigenvalue problem for a differential algebraic system of equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1575--1579},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a4/}
}
TY  - JOUR
AU  - A. A. Abramov
AU  - V. I. Ul'yanova
AU  - L. F. Yukhno
TI  - On a method for solving the nonlinear eigenvalue problem for a differential algebraic system of equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1575
EP  - 1579
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a4/
LA  - ru
ID  - ZVMMF_2005_45_9_a4
ER  - 
%0 Journal Article
%A A. A. Abramov
%A V. I. Ul'yanova
%A L. F. Yukhno
%T On a method for solving the nonlinear eigenvalue problem for a differential algebraic system of equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1575-1579
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a4/
%G ru
%F ZVMMF_2005_45_9_a4
A. A. Abramov; V. I. Ul'yanova; L. F. Yukhno. On a method for solving the nonlinear eigenvalue problem for a differential algebraic system of equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1575-1579. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a4/

[1] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Ob ispolzovanii printsipa argumenta v spektralnoi zadache dlya sistem obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 61–67 | MR | Zbl

[2] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Metod resheniya nelineinoi nesamosopryazhennoi spektralnoi zadachi dlya nekotorykh sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:1 (2004), 104–110 | MR | Zbl

[3] Abramov A. A., Ulyanova V. I., Yukhno L. F., “Ob odnom metode resheniya kraevykh zadach dlya lineinykh differentsialno-algebraicheskikh sistem uravnenii”, Zh. vychisl. matem. i matem. fiz., 45:7 (2005), 1192–1195 | MR | Zbl

[4] Griepentrog E., März R., Differential-algebraic equations and their numerical treatment, Teubner, Leipzig, 1986 | MR | Zbl

[5] Boyarintsev Yu. E., Metody resheniya nepreryvnykh i diskretnykh zadach dlya singulyarnykh sistem uravnenii, Nauka, Novosibirsk, 1996 | MR | Zbl

[6] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl

[7] Dzhangirova S. A., “O mnogotochechnykh zadachakh dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 27:9 (1987), 1375–1380 | MR