@article{ZVMMF_2005_45_9_a2,
author = {N. B. Brusnikina and G. K. Kamenev},
title = {On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1555--1565},
year = {2005},
volume = {45},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a2/}
}
TY - JOUR AU - N. B. Brusnikina AU - G. K. Kamenev TI - On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1555 EP - 1565 VL - 45 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a2/ LA - ru ID - ZVMMF_2005_45_9_a2 ER -
%0 Journal Article %A N. B. Brusnikina %A G. K. Kamenev %T On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1555-1565 %V 45 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a2/ %G ru %F ZVMMF_2005_45_9_a2
N. B. Brusnikina; G. K. Kamenev. On the complexity and methods of polyhedral approximations of convex bodies with a partially smooth boundary. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1555-1565. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a2/
[1] Minkowski H., “Volumen und Oberfläche”, Math. Ann., 57 (1903), 447–496 | DOI | MR
[2] Aleksandrov A. D., Vnutrennyaya geometriya vypuklykh poverkhnostei, Gostekhteorizdat, M.–L., 1948
[3] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1969
[4] Chernousko F. L., Otsenivanie fazovogo sostoyaniya dinamicheskikh sistem, Nauka, M., 1988 | MR
[5] Lotov A. B., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinoi upravlyaemoi sistemy”, Zh. vychisl. matem. i matem. fiz., 12:3 (1972), 785–787 | MR
[6] Lotov A. B., “Chislennyi metod issledovaniya nepreryvnosti vremeni bystrodeistviya v lineinykh sistemakh i resheniya zadachi Koshi dlya uravneniya Bellmana”, Zh. vychisl. matem. i matem. fiz., 13:5 (1973), 1315–1318 | MR
[7] Lotov A. B., “Chislennyi metod postroeniya mnozhestv dostizhimosti dlya lineinykh upravlyaemykh sistem s fazovymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 15:1 (1975), 67–68 | MR
[8] Vasilev N. S., “K otyskaniyu globalnogo minimuma kvazivognutoi funktsii”, Zh. vychisl. matem. i matem. fiz., 23:2 (1983), 307–313 | MR
[9] Sonnevend G., “An optimal sequential algorithm for the uniform approximation of convex functions on $[0, 1]$”, Appl. Math. Optimizat., 1983, no. 10, 127–142 | DOI | MR | Zbl
[10] Lotov A. V., Bushenkov V. A., Kamenev G. K., Chernykh O. L., Kompyuter i poisk kompromissa. Metod dostizhimykh tselei, Nauka, M., 1997
[11] Lotov A. V., Bushenkov V. A., Kamenev G. K., Interactive decision maps. Approximation and Visualization of Pareto Frontier, Appl. Optimization, 89, Kluwer Academic Publishers, Boston, 2004 | MR | Zbl
[12] Gruber P. M., “Approximation of convex bodies”, Convexity and its Applics, Birkhaüser, Basel etc., 1983, 131–162 | MR
[13] Dudley R., “Metric entropy of some classes of sets with differentiable boundaries”, J. Approximat. Theory, 10 (1974), 227–236 ; Corr., ibid, 26 (1979), 192–193 | DOI | MR | Zbl | DOI | MR | Zbl
[14] Bronshtein E. M., Ivanov L. D., “O priblizhenii vypuklykh mnozhestv mnogogrannikami”, Sibirskii matem. zh., 26:5 (1975), 1110–1112
[15] Schneider R., Wieacker J. A., “Approximation of convex bodies by polytopes”, Bull. London Math. Soc., 13 (1981), 149–156 | DOI | MR | Zbl
[16] Gruber P. M., Kenderov P., “Approximation of convex bodies by polytopes”, Rendiconti Circolo mat. Palermo. Ser. II, 31:2 (1982), 195–225 | DOI | MR | Zbl
[17] Böröczky K. Jr., “Approximation of General Smooth Convex Bodies”, Advanc. Math., 153 (2000), 325–341 | DOI | MR
[18] Kamenev G. K., “Ob approksimatsionnykh svoistvakh negladkikh vypuklykh diskov”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1464–1474 | MR | Zbl
[19] Blyashke V., Krug i shar, Nauka, M., 1967 | MR
[20] Schneider R., “Closed convex hypersurfaces with curvature restrictions”, Proc. Amer. Math. Soc., 103 (1988), 1201–1204 | DOI | MR | Zbl
[21] Brooks I. N., Strantzen J. B., “Blaschke's rolling theorem in $R^n$”, Mem. Amer. Math. Soc., 80, no. 405, Providence, 1989, 2–5 | MR
[22] Leichtweiss K., “Convexity and differential geometry”, Handbook of Convex Geometry, Ch. 4.1, v. V, eds. P. M. Gruber, J. M. Wills, Elsevier Science Publishers, 1993, 1045–1080 | MR
[23] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR
[24] Rokafellar R., Vypuklyi analiz, Mir, M., 1973
[25] Schneider R., “Zur optimalen Approximation konvexer Hyperflachen durch Polyeder”, Math. Ann., 256:3 (1981), 289–301 | DOI | MR | Zbl
[26] Schneider R., “Polyhedral approximation of smooth convex bodies”, J. Math. Analys. and Appl., 128:2 (1987), 470–474 | DOI | MR | Zbl
[27] Gruber P. M., “Volume approximation of convex bodies by inscribed polytopes”, Math. Ann., 281:2 (1988), 229–245 | DOI | MR | Zbl
[28] Gruber P. M., “Volume approximation of convex bodies by circumscribed polytopes”, Applied Geometry and Discrete Mathematics. The Victor Klee Festschrift, DIMACS Ser., 4, Amer. Math. Soc., Providence, RI, 1991, 309–317 | MR
[29] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, I”, Forum Math., 5 (1993), 281–297 | DOI | MR | Zbl
[30] Gruber P. M., “Asymptotic estimates for best and stepwise approximation of convex bodies, II”, Forum Math., 5 (1993), 521–538 | DOI | MR
[31] Gurevich V., Volmen G., Teoriya razmernosti, Izd-vo inostr. lit., M., 1948
[32] Gruber P. M., “Aspects of Approximation of Convex Bodies”, Handbook of Convex Geometry, Ch. 1.10, 321–345
[33] Gruber P. M., “Approximation by convex polytopes”, Polytopes: Abstract, Convex and Computational, Kluwer Acad. Publ., 1994, 173–203 | MR | Zbl
[34] Gruber P. M., “Comparisons of best and random approximation of convex bodies by polytopes”, Rendiconti Circolo mat. Palermo. Ser. II, 50, Suppl. (1997), 189–216 | MR | Zbl
[35] Kamenev G. K., “Ob odnom klasse adaptivnykh algoritmov approksimatsii vypuklykh tel mnogogrannikami”, Zh. vychisl. matem. i matem. fiz., 32:1 (1992), 136–152 | MR
[36] Lotov A. V., Bushenkov V. A., Kamenev G. K., Metod dostizhimykh tselei. Matematicheskie osnovy i ekologicheskie prilozheniya, Mellen Press, New York, USA, Lewiston, 1999
[37] Samsonov S. L., “Vosstanovlenie vypuklogo mnozhestva po ego opornoi funktsii s zadannoi tochnostyu”, Vestn. MGU. Ser. 15. Vychisl. matem. i kibernetika, 1983, no. 1, 68–71 | MR | Zbl
[38] Vasilev N. S., “O neuluchshaemykh otsenkakh approksimatsii silno vypuklykh tel”, Vopr. kibernetiki, 136 (1988), 49–56 | MR
[39] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004
[40] Kamenev G. K., “Issledovanie odnogo algoritma approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 34:4 (1994), 608–616 | MR | Zbl
[41] Kamenev G. K., “Effektivnye algoritmy vnutrennei poliedralnoi approksimatsii negladkikh vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 39:3 (1999), 446–450 | MR | Zbl
[42] Kamenev G. K., “Sopryazhennye adaptivnye algoritmy poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 42:9 (2002), 1351–1367 | MR | Zbl
[43] Kamenev G. K., “Metod poliedralnoi approksimatsii vypuklykh tel, optimalnyi po poryadku chisla raschetov opornoi i distantsionnoi funktsii”, Dokl. RAN, 388:3 (2003), 309–311 | MR
[44] Kamenev G. K., “Samodvoistvennye adaptivnye algoritmy poliedralnoi approksimatsii vypuklykh tel”, Zh. vychisl. matem. i matem. fiz., 43:8 (2003), 1123–1137 | MR | Zbl