On the properties of optimal point configurations for a family of comparison functionals for metric configurations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1720-1727 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The problem of searching for an optimal point configuration (i.e., a set of points such that the distances between them best fit a given metric configuration) is considered. An upper bound is obtained for the dimension of a space in which any metric configuration can be represented exactly or approximately by an optimal point configuration. It is shown that, if there is no point configuration that exactly represents a given metric configuration, then, for a natural family of comparison functionals for metric configurations, the dimension of a space in which there is an optimal point configuration is lower than the dimension required in the general case for representing a metric configuration of a given cardinality.
@article{ZVMMF_2005_45_9_a14,
     author = {A. I. Maysuradze},
     title = {On the properties of optimal point configurations for a family of comparison functionals for metric configurations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1720--1727},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a14/}
}
TY  - JOUR
AU  - A. I. Maysuradze
TI  - On the properties of optimal point configurations for a family of comparison functionals for metric configurations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1720
EP  - 1727
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a14/
LA  - ru
ID  - ZVMMF_2005_45_9_a14
ER  - 
%0 Journal Article
%A A. I. Maysuradze
%T On the properties of optimal point configurations for a family of comparison functionals for metric configurations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1720-1727
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a14/
%G ru
%F ZVMMF_2005_45_9_a14
A. I. Maysuradze. On the properties of optimal point configurations for a family of comparison functionals for metric configurations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1720-1727. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a14/

[1] Voronin Yu. A., Nachala teorii skhodstva, Nauka, Novosibirsk, 1991 | MR | Zbl

[2] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov, I”, Kibernetika, 1977, no. 4, 5–17

[3] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov, II”, Kibernetika, 1977, no. 6, 21–27 | Zbl

[4] Zhuravlev Yu. I., “Korrektnye algebry nad mnozhestvami nekorrektnykh (evristicheskikh) algoritmov, III”, Kibernetika, 1978, no. 2, 35–43 | Zbl

[5] Zhuravlev Yu. I., Rudakov K. V., “Ob algebraicheskoi korrektsii protsedur obrabotki (preobrazovaniya) informatsii”, Probl. prikl. matem. i informatiki, eds. O. M. Belotserkovskogo i dr., Nauka, M., 1987, 187–198 | MR

[6] Deivison M., Mnogomernoe shkalirovanie, Finansy i statistika, M., 1988 | MR

[7] Maisuradze A. M., “Ob optimalnykh razlozheniyakh konechnykh metricheskikh konfiguratsii v zadachakh raspoznavaniya obrazov”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1697–1707 | MR

[8] Maisuradze A. M., “Ob effektivnom vybore razmernostei predstavlenii metricheskikh konfiguratsii v evklidovykh prostranstvakh”, Intellektualizatsiya obrabotki informatsii, Tezisy dokl. Mezhdunar. nauchn. konf., Krymskii nauchn. tsentr HAH Ukrainy, Tavrich. nats. un-t, Simferopol, 2000, 48 pp.

[9] Cayley A., “On a theorem in the geometry of position”, Cambridge Math. Journal, 2 (1841), 267–271

[10] Menger K., “Untersuchungen über allgemeine metrik”, Mathematische Ann., 100 (1928), 75–163 | DOI | MR | Zbl

[11] Menger K., “New foundation of Euclidean geometry”, American Journal Math., 53 (1931), 721–745 | DOI | MR

[12] Deza M., Laurent M., Geometry of Cuts and Metrics, Springer, Berlin, 1997 | MR | Zbl

[13] De Leeuw J., Heiser W., “Theory of multidimensional scaling”, Handbook of Statistics, v. 2, Elsevier Sci. Publs., North-Holland, Amsterdam, 1982, 285–316 | MR

[14] Schoenberg I. J., “Remarks to article: Maurice Frechet, Sur la definition axiomatique d'une classe d'espace distancies vectoriellement applicable sur l'espace de Hilbert”, Ann. Math., 36 (1935), 724–732 | DOI | MR

[15] Schoenberg I. J., “On certain metric spaces arising from Euclidean spaces by a change of metric and their imbedding in Hilbert space”, Ann. Math., 38 (1937), 787–793 | DOI | MR

[16] Maisuradze A. M., “Effektivnaya razmernost kontrolnykh vyborok v zadachakh raspoznavaniya”, Matem. metody raspoznavaniya obrazov, Tezisy dokl. VIII Vseros. konf., VTs RAN, M.; In-t matem. problem biologii, 1997, 81–83