Error estimation for the Galerkin method as applied to a nonlinear coupled shell thermoelasticity problem with a three-dimensional heat equation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1677-1690 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A geometrically nonlinear coupled thermoelasticity problem for shallow shells is considered in the framework of the Kirchhoff–Love kinematic model with a three-dimensional generalized heat equation. An a priori error estimate of the semidiscrete Galerkin method as applied to the problem is established for specially chosen basis systems.
@article{ZVMMF_2005_45_9_a12,
     author = {S. E. Zhelezovsky},
     title = {Error estimation for the {Galerkin} method as applied to a nonlinear coupled shell thermoelasticity problem with a three-dimensional heat equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1677--1690},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a12/}
}
TY  - JOUR
AU  - S. E. Zhelezovsky
TI  - Error estimation for the Galerkin method as applied to a nonlinear coupled shell thermoelasticity problem with a three-dimensional heat equation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1677
EP  - 1690
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a12/
LA  - ru
ID  - ZVMMF_2005_45_9_a12
ER  - 
%0 Journal Article
%A S. E. Zhelezovsky
%T Error estimation for the Galerkin method as applied to a nonlinear coupled shell thermoelasticity problem with a three-dimensional heat equation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1677-1690
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a12/
%G ru
%F ZVMMF_2005_45_9_a12
S. E. Zhelezovsky. Error estimation for the Galerkin method as applied to a nonlinear coupled shell thermoelasticity problem with a three-dimensional heat equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1677-1690. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a12/

[1] Volmir A. S., Nelineinaya dinamika plastin i obolochek, Nauka, M., 1972 | MR

[2] Novatskii V., Dinamicheskie zadachi termouprugosti, Mir, M., 1970

[3] Podstrigach Ya. S., Shvets R. N., Termouprugost tonkikh obolochek, Nauk. dumka, Kiev, 1978 | MR

[4] Motovilovets I. A., Kozlov V. I., Mekhanika svyazannykh polei v elementakh konstruktsii, v. 1, Termouprugost, Nauk. dumka, Kiev, 1987

[5] Podstrigach Ya. S., “Temperaturnoe pole v tonkikh obolochkakh”, Dokl. AN USSR, 1958, no. 5, 505–507 | Zbl

[6] Bolotin V. V., “Uravneniya nestatsionarnykh temperaturnykh polei v tonkikh obolochkakh pri nalichii istochnikov tepla”, Prikl. matem. i mekhan., 24:2 (1960), 361–363 | MR | Zbl

[7] Danilovskaya V. I., “Priblizhennoe reshenie zadachi o statsionarnom temperaturnom pole v tonkoi obolochke proizvolnoi formy”, Izv. AN SSSR. OTN, 1957, no. 9, 157–158

[8] Shvets R. N., Flyachok V. M., “Osnovnye uravneniya termouprugikh ortotropnykh obolochek s uchetom poperechnykh sdvigovykh i normalnykh deformatsii”, Dokl. AN USSR. Ser. A, 1976, no. 6, 539–543 | Zbl

[9] Shvets R. N., Flyachok V. M., “Nekotorye teoremy teorii termouprugosti anizotropnykh obolochek”, Dokl. AN USSR. Ser. A, 1977, no. 6, 526–530 | Zbl

[10] Kirichenko V. F., Krysko V. A., “O suschestvovanii resheniya odnoi nelineinoi svyazannoi zadachi termouprugosti”, Differents. ur-niya, 20:9 (1984), 1583–1588 | MR | Zbl

[11] Chrzȩszczyk A., “On the regularity, uniqueness and continuous dependence for generalized solutions of some coupled problems in nonlinear theory of thermoelastic shells”, Arch. Mech., 38:1–2 (1986), 97–102 | MR | Zbl

[12] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Bubnova-Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. ur-niya, 23:8 (1987), 1407–1416 | MR

[13] Zhelezovskii S. E., “O skorosti skhodimosti metoda Bubnova-Galerkina dlya nelineinoi zadachi teorii uprugikh obolochek”, Differents. ur-niya, 31:5 (1995), 858–869 | MR

[14] Zhelezovskii S. E., Ivanov G. M., Krivonogov N. P., “O skorosti skhodimosti approksimatsii Galerkina dlya nelineinoi zadachi termouprugosti tonkikh plastin”, Zh. vychisl. matem. i matem. fiz., 38:1 (1998), 157–168 | MR

[15] Lyashko A. D., “Raznostnye skhemy dlya zadachi ob izgibe tonkikh plastin”, Chisl. metody mekhan. sploshnoi sredy, 4, no. 1, VTs SO AN SSSR, Novosibirsk, 1973, 71–83

[16] Lyashko A. D., “Raznostnye skhemy dlya zadach o malykh progibakh koltsevidnykh plastin”, Chisl. metody mekhan. sploshnoi sredy, 4, no. 2, VTs SO AN SSSR, Novosibirsk, 1973, 116–131

[17] Lyashko A. D., Karchevskii M. M., “Nelineinye zadachi filtratsii, uprugosti i plastichnosti i ikh setochnye approksimatsii”, Variatsionno-raznostnye metody v matem. fiz., OVM AN SSSR, M., 1984, 160–171

[18] Zabotina L. Sh., Karchevskii M. M., “O smeshannykh skhemakh konechnykh elementov dlya nelineinykh zadach teorii obolochek”, Izv. vuzov. Matem., 1996, no. 1, 44–50 | MR | Zbl

[19] Mansfield L., “Analysis of finite element methods for the nonlinear dynamic analysis of shells”, Numer. Math., 42:2 (1983), 213–235 | DOI | MR | Zbl

[20] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[21] Mikhlin S. G., Chislennaya realizatsiya variatsionnykh metodov, Nauka, M., 1966 | MR

[22] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 752–757 | MR

[23] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[24] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[25] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1981 | MR

[26] Wenk H.-U., “On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface”, Apl. math., 27:6 (1982), 393–416 | MR | Zbl

[27] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[28] Tribel Kh., Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[29] Gaevskii Kh., Greger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[30] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974