Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1651-1676 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analytic-numerical analysis of the one-dimensional boundary value problem for the Ginzburg–Landau equations is presented. The problem describes the stationary states of an infinite superconducting plate of finite thickness in a magnetic field. The emphasis is on the examination of the dynamic stability of solutions in the framework of linear perturbation theory.
@article{ZVMMF_2005_45_9_a11,
     author = {A. L. Duischko and G. F. Zharkov and N. B. Konyukhova and S. V. Kurochkin},
     title = {Analytic{\textendash}numerical investigation of the nonlinear boundary value problem for a~superconducting plate in a~magnetic field},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1651--1676},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a11/}
}
TY  - JOUR
AU  - A. L. Duischko
AU  - G. F. Zharkov
AU  - N. B. Konyukhova
AU  - S. V. Kurochkin
TI  - Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1651
EP  - 1676
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a11/
LA  - ru
ID  - ZVMMF_2005_45_9_a11
ER  - 
%0 Journal Article
%A A. L. Duischko
%A G. F. Zharkov
%A N. B. Konyukhova
%A S. V. Kurochkin
%T Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1651-1676
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a11/
%G ru
%F ZVMMF_2005_45_9_a11
A. L. Duischko; G. F. Zharkov; N. B. Konyukhova; S. V. Kurochkin. Analytic–numerical investigation of the nonlinear boundary value problem for a superconducting plate in a magnetic field. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1651-1676. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a11/

[1] Ginzburg V. ., Landau L. D., “K teorii sverkhprovodimosti”, Zh. eksperim. i teor. fiz., 20:12 (1950), 1064–1081

[2] Zharkov G. F., “O zarozhdenii sverkhprovodimosti i gisterezise v tsilindricheskom sverkhprovodnike I roda”, Zh. eksperim. i teoretich. fiz., 122:3(9) (2002), 600–609

[3] Zharkov G. F., “First and second order phase transitions and magnetic hysteresis in a superconducting plate”, J. Low Temp. Phys., 130:1/2 (2003), 45–67 | DOI

[4] Zharkov G. F., “Sverkhprovodyaschie sostoyaniya i magnitnyi gisterezis v sverkhprovodnikakh konechnogo razmera”, Uspekhi fiz. nauk, 174:9 (2004), 1012–1017

[5] Brushlinskii K. V., Savelev V. V., “Magnitnye lovushki dlya uderzhaniya plazmy”, Matem. modelirovanie, 11:5 (1999), 3–36 | MR

[6] Rybakov Yu. P., Sanyuk V. I., Mnogomernye solitony, Izd-vo Rossiiskogo universiteta druzhby narodov, M., 2001

[7] Kiguradze I. T., Shekhter B. L., “Singulyarnye kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii vtorogo poryadka”, Itogi nauki i tekhniki. Sovrem. probl. matem., 30, 1987, 105–201 | MR

[8] Rachůková I., “Multiple solutions of nonlinear boundary value problems and topological degree”, EQUADIFF 9, Proc. of the Conf. on Differential Equations and Their Applications (Brno, August 25–29, 1997), Masaryk Univ., 1997, 147–158

[9] Vasileva A. B., Butuzov V. F., Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vyssh. shkola, M., 1990 | MR

[10] Vasil'eva A. B., Butusov V. F., Kalachev L. V., The boundary function method for singular perturbation problems, SIAM, Philadelphia, 1995 | MR

[11] Keller H. B.. White A. B. Jr., “Difference methods for boundary value problems in ordinary differential equations”, SIAM J. Numer. Anal., 12:5 (1975), 791–802 | DOI | MR | Zbl

[12] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[13] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhteoretizdat, M.–L., 1950 | Zbl

[14] Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Nauka, M., 1977

[15] Bogomolnyi E. B., “Ustoichivost klassicheskikh reshenii”, Yadernaya fizika, 24:4 (1976), 861–870 | MR

[16] Luk'yanchuk I., “Theory of superconductors with $\kappa$ close to $1/\sqrt2$”, Phys. Rev. B, 63 (2001), 174504-1–174504-13 | DOI

[17] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, Izd-vo inostr. lit., M., 1958

[18] Kitoroage D. I., Konyukhova N. B., Pariiskii B. S., “Modifitsirovannyi metod fazovykh funktsii v singulyarnykh zadachakh kvantovoi fiziki na svyazannye sostoyaniya chastits”, Soobsch. po prikl. matem., VTs AN SSSR, M., 1987

[19] Konyukhova N. B., Staroverova I. B., “Modifikatsiya fazovogo metoda resheniya singulyarnykh zadach Shturma-Liuvillya”, Zh. vychisl. matem. i matem. fiz., 37:10 (1997), 1183–1200 | MR | Zbl

[20] Abramov A. A., “O perenose granichnykh uslovii dlya sistem lineinykh obyknovennykh differentsialnykh uravnenii (variant metoda progonki)”, Zh. vychisl. matem. i matem. fiz., 1:3 (1961), 542–545 | MR | Zbl

[21] Abramov A. A., Ditkin V. V., Konyukhova N. B. i dr., “Vychislenie sobstvennykh znachenii i sobstvennykh funktsii obyknovennykh differentsialnykh uravnenii s osobennostyami”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1155–1172 | MR