Integration method as applied to the Cauchy problem for a Langmuir chain with divergent initial conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1639-1650 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A fast decreasing solution to the Cauchy problem for a Langmuir chain with a divergent initial condition has been investigated. An algorithm for finding a fast decreasing solution has been found, and the existence of this solution has been proved. A class of initial conditions ensuring the existence of a solution has been found.
@article{ZVMMF_2005_45_9_a10,
     author = {A. Kh. Khanmamedov},
     title = {Integration method as applied to the {Cauchy} problem for a {Langmuir} chain with divergent initial conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1639--1650},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a10/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
TI  - Integration method as applied to the Cauchy problem for a Langmuir chain with divergent initial conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1639
EP  - 1650
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a10/
LA  - ru
ID  - ZVMMF_2005_45_9_a10
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%T Integration method as applied to the Cauchy problem for a Langmuir chain with divergent initial conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1639-1650
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a10/
%G ru
%F ZVMMF_2005_45_9_a10
A. Kh. Khanmamedov. Integration method as applied to the Cauchy problem for a Langmuir chain with divergent initial conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1639-1650. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a10/

[1] Manakov C. B., “O polnoi integriruemosti i stokhastizatsii v diskretnykh dinamicheskikh sistemakh”, Zh. eksperim. i teor. fiz., 67:2 (1974), 543–555 | MR

[2] Toda M., Teoriya nelineinykh reshetok, Mir, M., 1984 | MR

[3] Zakharov V. E., Manakov S. V., Novikov S. P., Pitaevskii L. P., Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR

[4] Khanmamedov Ag. Kh., “Odno zamechanie otnositelno zadach Koshi dlya nelineinykh tsepochek”, Dokl. HAH Azerbaidzhana, 57:4–6 (2001), 9–14 | MR

[5] Berezanskii Yu. M., “Integrirovanie nelineinykh raznostnykh uravnenii metodom obratnoi spektralnoi zadachi”, Dokl. AN SSSR, 281:1 (1985), 16–19 | MR

[6] Veselov A. P., “Integrirovanie statsionarnoi zadachi dlya klassicheskoi spinovoi tsepochki”, Teor. i matem. fiz., 71:1 (1987), 154–159 | MR

[7] Vereschagin V. L., “Spektralnaya teoriya odnofaznykh reshenii tsepochki Volterra”, Matem. zametki, 48:2 (1990), 145–148 | MR

[8] Khanmamedov Ag. Kh., “On the theory of inverse scattering problems for a system of a difference equation”, Trans. Acad. Sci. Azerb. Ser. Phys.-Techn. and Math. Sci., 20:4 (2000), 132–145 | MR

[9] Khanmamedov Ag. Kh., “Operatory preobrazovaniya dlya vozmuschennogo raznostnogo uravneniya Khilla i ikh odno prilozhenie”, Sibirskii matem. zh., 44:4 (2003), 926–937 | MR | Zbl

[10] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR