A regularized extragradient method for solving equilibrium programming problems in a Hilbert space
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1538-1554 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A regularized method of the gradient type for solving equilibrium problems in a Hilbert space is proposed. It is combined with an approximation of the original problem. The convergence of this method is analyzed, and a regularizing operator is constructed.
@article{ZVMMF_2005_45_9_a1,
     author = {A. S. Stukalov},
     title = {A regularized extragradient method for solving equilibrium programming problems in a {Hilbert} space},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1538--1554},
     year = {2005},
     volume = {45},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a1/}
}
TY  - JOUR
AU  - A. S. Stukalov
TI  - A regularized extragradient method for solving equilibrium programming problems in a Hilbert space
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1538
EP  - 1554
VL  - 45
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a1/
LA  - ru
ID  - ZVMMF_2005_45_9_a1
ER  - 
%0 Journal Article
%A A. S. Stukalov
%T A regularized extragradient method for solving equilibrium programming problems in a Hilbert space
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1538-1554
%V 45
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a1/
%G ru
%F ZVMMF_2005_45_9_a1
A. S. Stukalov. A regularized extragradient method for solving equilibrium programming problems in a Hilbert space. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 9, pp. 1538-1554. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_9_a1/

[1] Oben Zh.-P., Nelineinyi analiz i ego ekonomicheskie prilozheniya, Mir, M., 1988 | MR

[2] Aubin J.-P., Frankowska H., Set-Valued Analysis, Birkhäuser, Boston, 1990 | MR | Zbl

[3] Antipin A. S., “O differentsialnykh gradientnykh metodakh prognoznogo tipa dlya vychisleniya nepodvizhnykh tochek ekstremalnykh otobrazhenii”, Differents. ur-niya, 31:11 (1995), 1786–1795 | MR | Zbl

[4] Antipin A. C., “Ravnovesnoe programmirovanie: proksimalnye metody”, Zh. vychisl. matem. i matem. fiz., 37:11 (1997), 1327–1339 | MR | Zbl

[5] Antipin A. C., “Metod vnutrennei linearizatsii dlya zadach ravnovesnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 40:8 (2000), 1142–1162 | MR

[6] Antipin A. S., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs RAN, M., 2002

[7] Vasilev F. P., Stukalov A. C., “Usloviya approksimatsii ravnovesnykh zadach po znacheniyu funktsionala”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1195–1207 | MR

[8] Vasilev F. P., Stukalov A. C., “Approksimatsii ravnovesnoi zadachi po argumentu”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 1972–1982 | MR

[9] Antipin A. C., Vasilev F. P., Shpirko C. B., “Regulyarizovannyi ekstragradientnyi metod resheniya zadach ravnovesnogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 43:10 (2003), 1451–1458 | MR | Zbl

[10] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1986 | MR | Zbl

[11] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[12] Baiokki K., Kapelo A., Variatsionnye i kvazivariatsionnye neravenstva. Prilozheniya k zadacham so svobodnoi granitsei, Nauka, M., 1988 | MR

[13] Antipin A. C., “Rasscheplenie gradientnogo podkhoda dlya resheniya ekstremalnykh vklyuchenii”, Zh. vychisl. matem. i matem. fiz., 38:7 (1998), 1118–1132 | MR | Zbl