@article{ZVMMF_2005_45_8_a9,
author = {V. A. Garanzha and I. E. Kaporin},
title = {On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1450--1465},
year = {2005},
volume = {45},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/}
}
TY - JOUR AU - V. A. Garanzha AU - I. E. Kaporin TI - On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1450 EP - 1465 VL - 45 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/ LA - ru ID - ZVMMF_2005_45_8_a9 ER -
%0 Journal Article %A V. A. Garanzha %A I. E. Kaporin %T On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1450-1465 %V 45 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/ %G ru %F ZVMMF_2005_45_8_a9
V. A. Garanzha; I. E. Kaporin. On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1450-1465. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/
[1] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Archives for Rational Mech. Analys., 63 (1977), 337–403 | DOI | MR | Zbl
[2] Syarle F., Matematicheskaya teoriya uprugosti, Mir, M., 1992
[3] Garanzha B. A., “Barernyi metod postroeniya kvaziizometricheskikh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl
[4] Blatz P. J., “On the thermostatic behaviour of elastomers”, Polymer Networks, Structure and Mechanical properties, Plenum Press, New York, 1971, 23–45
[5] Ciarlet P. G., Geymonat G., “Sur les lois de comportement en elasticite non-lineaire compressible”, C.R. Acad. Sci. Paris Ser. II, 295 (1982), 423–426 | MR | Zbl
[6] Ogden R. W., “Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubber-like solids”, Proc. Roy. Soc. London A, 328, 567–583 | Zbl
[7] Garanzha B. A., Kaporin I. E., “Regulyarizatsiya barernogo variatsionnogo metoda postroeniya raschetnykh setok”, Zh. vychisl. matem. i matem. fiz., 39:9 (1999), 1489–1503 | MR | Zbl
[8] Kaporin I. E., “Ispolzovanie vnutrennikh iteratsii metoda sopryazhennykh gradientov pri reshenii bolshikh razrezhennykh nelineinykh zadach optimizatsii”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 802–807 | MR | Zbl