On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1450-1465
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Gradient descent methods are examined for the minimization of barrier-type polyconvex functionals arising in finite-deformation elasticity theory and grid optimization. The minimum of a functional is sought in the class of continuous piecewise affine deformations that preserve orientation. Sufficient conditions are found for a sequence of iterative approximations to belong to the feasible set and for the norm of the gradient of the functional to converge to zero on this set. As the functional, one can use a measure of the deformation of a grid, for instance, a grid formed of triangles or tetrahedra.
            
            
            
          
        
      @article{ZVMMF_2005_45_8_a9,
     author = {V. A. Garanzha and I. E. Kaporin},
     title = {On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1450--1465},
     publisher = {mathdoc},
     volume = {45},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/}
}
                      
                      
                    TY - JOUR AU - V. A. Garanzha AU - I. E. Kaporin TI - On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1450 EP - 1465 VL - 45 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/ LA - ru ID - ZVMMF_2005_45_8_a9 ER -
%0 Journal Article %A V. A. Garanzha %A I. E. Kaporin %T On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1450-1465 %V 45 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/ %G ru %F ZVMMF_2005_45_8_a9
V. A. Garanzha; I. E. Kaporin. On the convergence of a gradient method for the minimization of functionals in finite deformation elasticity theory and for the minimization of barrier grid functionals. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1450-1465. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a9/
