The use of lacunas of hyperbolic equations and the difference potential method for computing wave diffraction in a bounded neighborhood of a scatterer at long times
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1435-1449 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Artificial boundary conditions that are equivalent to a difference analogue of the Maxwell system in a vacuum outside the computational subdomain are constructed, and an algorithm for calculating them is developed. The computational cost of this algorithm per time step is proportional to the number of points in the computational subdomain and is independent of the step number. The approach combines the use of lacunas with the difference potential method. A brief review of earlier results based on this approach is presented.
@article{ZVMMF_2005_45_8_a8,
     author = {V. S. Ryabenkii and V. I. Turchaninov},
     title = {The use of lacunas of hyperbolic equations and the difference potential method for computing wave diffraction in a bounded neighborhood of a scatterer at long times},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1435--1449},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a8/}
}
TY  - JOUR
AU  - V. S. Ryabenkii
AU  - V. I. Turchaninov
TI  - The use of lacunas of hyperbolic equations and the difference potential method for computing wave diffraction in a bounded neighborhood of a scatterer at long times
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1435
EP  - 1449
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a8/
LA  - ru
ID  - ZVMMF_2005_45_8_a8
ER  - 
%0 Journal Article
%A V. S. Ryabenkii
%A V. I. Turchaninov
%T The use of lacunas of hyperbolic equations and the difference potential method for computing wave diffraction in a bounded neighborhood of a scatterer at long times
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1435-1449
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a8/
%G ru
%F ZVMMF_2005_45_8_a8
V. S. Ryabenkii; V. I. Turchaninov. The use of lacunas of hyperbolic equations and the difference potential method for computing wave diffraction in a bounded neighborhood of a scatterer at long times. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1435-1449. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a8/

[1] Ryabenkii B. C., “Tochnyi perenos kraevykh uslovii”, Funkts. analiz i ego prilozh., 24:3 (1990), 90–91 | MR

[2] Ryabenkii B. C., “Tochnyi perenos raznostnykh kraevykh uslovii”, Vychisl. mekhan. deformiruemogo tverdogo tela, 1990, no. 1, 129–145

[3] Ryabenkii V. S., “Nonreflecting time-dependent boundary conditions on artificial boundaries of varying location and shape”, Appl. Numer. Math., 33 (2004), 481–492 | DOI | MR

[4] Ryabenkii B. C., Turchaninov V. I., Tsynkov C. B., “Ispolzovanie lakun resheniya ZD-volnovogo uravneniya dlya vychisleniya resheniya zadachi Koshi na bolshikh vremenakh”, Matem. modelirovanie, 11:12 (1999), 113–126 | MR

[5] Turchaninov V. I., “Svoistvo lakun resheniya raznostnogo analoga prostranstvennogo volnovogo uravneniya”, Dokl. RAN, 375:4 (2000), 451 | MR | Zbl

[6] Ryabenkii B. C., Turchaninov V. I., Tsynkov C. B., “Neotrazhayuschie granichnye usloviya dlya zameny otbrasyvaemykh uravnenii s lakunami”, Matem. modelirovanie, 12:19 (2000), 113–126 | MR

[7] Ryabenkii V. S., Tsynkov S. V., Turchaninov V. I., “Long-time numerical computation of wave type solutions driven by moving sources”, Appl. Numer. Math., 38:3 (2001), 187–222 | DOI | MR

[8] Ryabenkii V. S., Tsynkov S. V., Turchaninov V. I., “Global discrete artificial boundary conditions for time-dependent wave propagation”, J. Comput. Phys., 174 (2001), 712–758 | DOI | MR

[9] Tsynkov S. V., “Artificial boundary conditions for the numerical simulation of unsteady acoustic waves”, J. Comput. Phys., 189:2 (2001), 626–650 | DOI | MR

[10] Tsynkov C. B., Nelokalnye iskusstvennye granichnye usloviya dlya chislennogo resheniya zadach v neogranichennykh oblastyakh, Dis. ...dok. fiz.-matem. nauk, In-t matem. modelirovaniya RAN, M., 2003, 127 pp.

[11] Tsynkov S. V., “On the application of lacunae-based methods to Maxwell's equations”, J. Comput. Phys., 199:1 (2004), 126–149 | DOI | MR | Zbl

[12] Ryabenkii B. C., Metod raznostnykh potentsialov i ego prilozheniya, Fizmatlit, M., 2002

[13] Sofronov I. L., “Usloviya polnoi prozrachnosti na sfere dlya trekhmernogo volnovogo uravneniya”, Dokl. RAN, 326:6 (1992), 453–457

[14] Grote M. J., Keller J. B., “On nonreflecting boundary conditions”, J. Comput. Phys., 122:1 (1995), 231–243 | DOI | MR | Zbl

[15] Tsynkov S. V., “Numerical solution of problems on unbounded domains. A review”, Appl. Numer. Math., 33 (1998), 465–532 | DOI | MR

[16] Lebedev V. I., “O metode setok dlya odnoi sistemy uravnenii v chastnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 22:5 (1958), 717–734 | Zbl

[17] Lebedev V. I., Metod setok dlya odnoi sistemy uravnenii v chastnykh proizvodnykh, Dis. ...kand. fiz.-matem. nauk, MGU, M., 1957, 175 pp.

[18] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii, osnovnykh differentsialnykh operatorov i nekotorykh kraevykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 4:3 (1964), 449–465 | MR | Zbl

[19] Yee K. S., “Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media”, IEEE Trans. Antennas. Propagat., 14:1 (1966), 302–307 | Zbl