Error bounds for controllable adaptive algorithms based on a Hessian recovery
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1424-1434 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

One of the main goals of adaptive algorithms for unstructured mesh generation is to obtain a better discretization error with the use of the least possible number of mesh cells. For many problems, the discretization error can be bounded above by the interpolation error. The main goal of this paper is to analyze the interpolation error for controllable adaptive algorithms based on a Hessian recovery.
@article{ZVMMF_2005_45_8_a7,
     author = {Yu. V. Vassilevski and K. N. Lipnikov},
     title = {Error bounds for controllable adaptive algorithms based on a {Hessian} recovery},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1424--1434},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a7/}
}
TY  - JOUR
AU  - Yu. V. Vassilevski
AU  - K. N. Lipnikov
TI  - Error bounds for controllable adaptive algorithms based on a Hessian recovery
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1424
EP  - 1434
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a7/
LA  - ru
ID  - ZVMMF_2005_45_8_a7
ER  - 
%0 Journal Article
%A Yu. V. Vassilevski
%A K. N. Lipnikov
%T Error bounds for controllable adaptive algorithms based on a Hessian recovery
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1424-1434
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a7/
%G ru
%F ZVMMF_2005_45_8_a7
Yu. V. Vassilevski; K. N. Lipnikov. Error bounds for controllable adaptive algorithms based on a Hessian recovery. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1424-1434. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a7/

[1] D'Azevedo E., “Optimal triangular mesh generation by coordinate transformation”, SIAM J. Sci. Stat. Comput., 12:4 (1991), 755–786 | DOI | MR

[2] Rippa S., “Long and thin triangles can be good for linear interpolation”, SIAM J. Numer. Anal., 29 (1992), 257–270 | DOI | MR | Zbl

[3] Agouzal A., Lipnikov K., Vassilevski Y., “Adaptive generation of quasi-optimal tetrahedral meshes”, East-West J. Numer. Math., 7:4 (1999), 223–244 | MR | Zbl

[4] Agouzal A., Vassilevski Y., “On a discrete Hessian recovery for $P_1$ finite elements”, J. Numer. Math., 10:1 (2002), 1–12 | DOI | MR | Zbl

[5] Buscaglia G., Dari E., “Anisotropic mesh optimization and its application in adaptivity”, Internat. J. Numer. Meth. Engng., 40 (1997), 4119–4136 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[6] Buscaglia G., Agouzal A., Ramirez P., Dari E., “On Hessian recovery and anisotropic adaptivity”, Proc. ECCOMAS 98, Athens, Greece, 1998, 403–407

[7] Zienkiewicz O., Wu J., “Automatic directional refinement in adaptive analysis of compressible flows”, Internat. J. Numer. Meth. Engnr., 37 (1994), 2189–2210 | DOI | MR | Zbl

[8] Apel T., Randrianarivony H., “Stability of discretizations of the Stokes problem on anisotropic meshes”, Math. Comput. Simulat., 61 (2003), 437–447 | DOI | MR | Zbl

[9] Prudhomme S., Oden J., “On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors”, Comput. Methods Appl. Mech. Engrg., 176 (1999), 313–331 | DOI | MR | Zbl

[10] Vassilevski Y., Lipnikov K., “Optimal triangulations: existence, approximation and double differentiation of $P_1$ finite element functions”, Comput. Math. and Math. Phys., 43:6 (2003), 827–835 | MR

[11] D'Azevedo E., Simpson R., “On optimal triangular meshes for minimizing the gradient error”, Numer. Math., 59 (1991), 321–348 | DOI | MR

[12] Zavattieri P., Dari E., Buscaglia G., “Optimization strategies in unstructured mesh generation”, Internat. J. Numer. Meth. Engng., 39 (1996), 2055–2071 | 3.0.CO;2-2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[13] Vassilevski Y., Lipnikov K., “Adaptive algorithm for generation of quasi-optimal meshes”, Comput. Math. and Math. Phys., 39:9 (1999), 1532–1551 | MR

[14] Ciarlet P. G., Wagschal C., “Multipoint Taylor formulas and applications to the finite element method”, Numer. Math., 17 (1971), 84–100 | DOI | MR | Zbl

[15] Ciarlet P. G., The finite element method for elliptic problems, North-Holland, Amsterdam, 1978 | MR | Zbl

[16] Lipnikov K., Vassilevski Y., “On control of adaptation in parallel mesh generation”, Engng. Comput., 20:3 (2004), 193–201 | DOI

[17] Lipnikov K., Vassilevski Y., “Parallel adaptive solution of 3D boundary value problems by Hessian recovery”, Comput. Meth. Appl. Mech. Engng., 192:11–12 (2003), 1495–1513 | DOI | MR | Zbl

[18] Apel T., Anisotropic finite elements: Local estimates and applications, Teubner, Stuttgart, 1999 | MR | Zbl