Constrained Delaunay tetrahedralization for bodies with curved boundaries
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1407-1423 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some methods used for the constrained Delaunay tetrahedralization of bodies with a piecewise linear boundary are generalized for the case of bodies with a curved boundary. New approaches to the solution of this problem are suggested. The emphasis is on the boundary recovery problem based on iterative algorithms.
@article{ZVMMF_2005_45_8_a6,
     author = {S. N. Borovikov and I. E. Ivanov and I. A. Kryukov},
     title = {Constrained {Delaunay} tetrahedralization for bodies with curved boundaries},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1407--1423},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a6/}
}
TY  - JOUR
AU  - S. N. Borovikov
AU  - I. E. Ivanov
AU  - I. A. Kryukov
TI  - Constrained Delaunay tetrahedralization for bodies with curved boundaries
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1407
EP  - 1423
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a6/
LA  - ru
ID  - ZVMMF_2005_45_8_a6
ER  - 
%0 Journal Article
%A S. N. Borovikov
%A I. E. Ivanov
%A I. A. Kryukov
%T Constrained Delaunay tetrahedralization for bodies with curved boundaries
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1407-1423
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a6/
%G ru
%F ZVMMF_2005_45_8_a6
S. N. Borovikov; I. E. Ivanov; I. A. Kryukov. Constrained Delaunay tetrahedralization for bodies with curved boundaries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1407-1423. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a6/

[1] Bowyer A., “Computing Dirichlet tessellations”, Comput. Journal, 5:2 (1981), 162–166 | DOI | MR

[2] Watson D. F., “Computing the $n$-dimensional Delaunay tessellation with application to Voronoi polytopes”, Comput. Journal, 24:2 (1981), 167–172 | DOI | MR

[3] Joe B., “Construction of three-dimensional Delaunay triangulations using local transformations”, Comput. Aided Geometric Design, 8 (1991), 123–142 | DOI | MR | Zbl

[4] Ruppert J. A., “Delaunay refinement algorithm for quality 2-dimensional mesh generation”, J. Algorith., 18:3 (1995), 548–585 | DOI | MR | Zbl

[5] Shewchuk J. R., “Mesh generation for domains with small angles”, Proc. 16th Ann. Symp. on Comput. Geometry (2000, June), ACM, Hong Kong, 1–10 | MR

[6] Miller G. L., Pav S. E., Walkington N. J., “When and why Ruppert's algorithm works”, Proc. 12th Internat. Meshing Roundtable (Santa Fe, USA, September, 2003)

[7] Murphy M., Mount D. M., Gable C. W., “A point-placement strategy for conforming Delaunay tetrahedralization”, Internat. J. Comput. Geometry and Appl., 11:6 (2001), 669–682 | DOI | MR | Zbl

[8] Cohen-Steiner D., Éric Colin de Verdiére, Yvinec M., “Conforming Delaunay triangulations in 3D”, Proc. 18th Ann. ACM Symp. Comput. Geometry (Barcelona, June, 2002), 199–208

[9] Pav S. E., Walkington N. J., “Robust three dimensional Delaunay refinement”, Proc. 13th Internat. Meshing Roundtable, Williamsburg, USA, September, 2004

[10] Shewchuk J. R., “A condition guaranteeing the existence of higher-dimensional constrained Delaunay triangulations”, Proc. 14th Ann. Symp. Comput. Geometry (Minneapolis, Minnesota, June, 1998), ACM, 76–85

[11] Skvortsov A. V., “Algoritmy postroeniya triangulyatsii s ogranicheniyami”, Vychisl. metody i programmirovanie, 3 (2002), 82–92

[12] Béchet E., Cuilliere J. C., Trochu F., “Generation of a finite element MESH from stereolithography (STL) files”, Comput. Aided Design, 34:1 (2002), 1–17 | DOI

[13] Frey P. J., “About surface remeshing”, Proc. 9th Internat. Meshing Roundtable (New Orleans, Louisiana, October, 2000)

[14] Mitchell S. A., Vavasis S. A., “Quality mesh generation in higher dimensions”, SIAM J. Comput., 29 (2000), 1334–1370 | DOI | MR | Zbl

[15] Boivin C., Ollivier-Gooch C., “Guaranteed-quality triangular mesh generation for domains with curved boundaries”, Internat. J. Numer. Meth. Eng., 55:10, August (2002), 1185–1213 | DOI | Zbl

[16] Chew L. P., “Guaranteed-quality mesh generation for curved surfaces”, Proc. 9th Ann. ACM Symposium on Computational Geometry (May, 1993), 274–280

[17] Chen H., Bishop J., “Delaunay triangulation for curved surfaces”, Proc. 6th Internat. Meshing Roundtable (Park City, USA, October, 1997)

[18] Bossen F. J., Heckbert P. S., “A pliant method for anisotropic mesh generation”, Proc. 5th Internat. Meshing Roundtable (Pittsburgh, USA, October, 1996)