Approximation of the eigenfrequencies of a triangular grid of bars
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1399-1406 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A rectangular plate is approximated by a regular triangular grid of bars. It is shown that the low-frequency spectrum of the plate is close to that of the grid. The difference between the eigenvalues of the continual and discrete problems is estimated in terms of the periodicity cell. The proof of the main result is based on a finite difference analogue of the Laplacian and on certain facts from the theory of differential equations on graphs.
@article{ZVMMF_2005_45_8_a5,
     author = {E. M. Bogatov},
     title = {Approximation of the eigenfrequencies of a triangular grid of bars},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1399--1406},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a5/}
}
TY  - JOUR
AU  - E. M. Bogatov
TI  - Approximation of the eigenfrequencies of a triangular grid of bars
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1399
EP  - 1406
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a5/
LA  - ru
ID  - ZVMMF_2005_45_8_a5
ER  - 
%0 Journal Article
%A E. M. Bogatov
%T Approximation of the eigenfrequencies of a triangular grid of bars
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1399-1406
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a5/
%G ru
%F ZVMMF_2005_45_8_a5
E. M. Bogatov. Approximation of the eigenfrequencies of a triangular grid of bars. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1399-1406. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a5/

[1] Oleinik O. A., Iosifyan G. A., Shamaev A. S., Matematicheskie zadachi teorii silno neodnorodnykh uprugikh sred, MGU, M., 1990

[2] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usredneniya differentsialnykh operatorov, Nauka, M., 1993 | MR | Zbl

[3] Vainikko G. M., Kompaktnaya approksimatsiya operatorov i priblizhennoe reshenie uravnenii, Tartu, 1970 | MR | Zbl

[4] Komarov A. V., Penkin O. M., Pokornyi Yu. V., “O spektre ravnomernoi setki iz strun”, Izv. vuzov. Matem., 463:4 (2000), 23–27 | MR

[5] Nicase S., Penkin O., “Relationsheep between the lower frequence spectrum of plates and networks of beams”, Math. Meth. Appl. Sci., 2000, no. 23, 1389–1399 | 3.0.CO;2-K class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR

[6] Pshenichnov G. I., Teoriya tonkikh uprugikh setchatykh obolochek i plastinok, Nauka, M., 1982

[7] Timoshenko S. P., Guder Dzh., Teoriya uprugosti, Nauka, M., 1979

[8] Kollatts L., Zadachi na sobstvennye znacheniya, Nauka, M., 1968

[9] Bogatov E. M., Modelnyi primer, privodyaschii k ellipticheskim uravneniyam chetvertogo poryadka na stratifitsirovannykh mnozhestvakh i razreshimost sootvetstvuyuschikh polulineinykh kraevykh zadach, Dep. v VINITI 21.11.03, No 2023-V2003, Starooskolskii tekhnol. in-t (f-l MISiS), Staryi Oskol, 2003, 18 pp.

[10] Kamenskii M. I., Penkin O. M., Pokornyi Yu. V., “O polugruppe v zadache diffuzii na prostranstvennoi seti”, Dokl. RAN, 368:2 (1999), 157–159 | MR

[11] Pokornyi Yu. V., Penkin O. M., Pryadiev V. L. i dr., Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2004 | Zbl

[12] Penkin O. M., Bogatov E. M., “O slaboi razreshimosti zadachi Dirikhle na stratifitsirovannykh mnozhestvakh”, Matem. zametki, 68:6 (2000), 874–886 | MR | Zbl

[13] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, v. II, Vischa shkola, Kharkov, 1978

[14] Bogatov E. M., O razreshimosti ellipticheskikh uravnenii na stratifitsirovannykh mnozhestvakh, Dis. ...kand. fiz.-matem. nauk, VGU, Voronezh, 2000

[15] Vazov V., Forsait Dzh., Raznostnye metody resheniya uravnenii v chastnykh proizvodnykh, Izd-vo inostr. lit., M., 1963 | MR

[16] Makarov V. L., Makarov S. V., Moskalkov M. N., “Spektralnye svoistva raznostnogo operatora Laplasa na shestiugolnoi setke i nekotorye ikh primeneniya”, Differents. ur-niya, 29:7 (1993), 1216–1221 | MR | Zbl

[17] Timoshenko S. P., Kolebaniya v inzhenernom dele, Fizmatgiz, M., 1959