Approximation of the eigenfrequencies of a triangular grid of bars
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1399-1406
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A rectangular plate is approximated by a regular triangular grid of bars. It is shown that the low-frequency spectrum of the plate is close to that of the grid. The difference between the eigenvalues of the continual and discrete problems is estimated in terms of the periodicity cell. The proof of the main result is based on a finite difference analogue of the Laplacian and on certain facts from the theory of differential equations on graphs.
            
            
            
          
        
      @article{ZVMMF_2005_45_8_a5,
     author = {E. M. Bogatov},
     title = {Approximation of the eigenfrequencies of a triangular grid of bars},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1399--1406},
     publisher = {mathdoc},
     volume = {45},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a5/}
}
                      
                      
                    TY - JOUR AU - E. M. Bogatov TI - Approximation of the eigenfrequencies of a triangular grid of bars JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1399 EP - 1406 VL - 45 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a5/ LA - ru ID - ZVMMF_2005_45_8_a5 ER -
E. M. Bogatov. Approximation of the eigenfrequencies of a triangular grid of bars. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1399-1406. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a5/
