Bi-Lipschitz parameterizations of nonsmooth surfaces and surface grid generation
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1383-1398 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A parameterization of a surface is specified by a one-to-one mapping of a planar domain to a domain on the surface. The available approaches, which are based on conformal, quasi-conformal, and harmonic mappings, usually yield singular parameterizations when applied to nonsmooth surfaces. A variational method is considered that makes it possible to construct quasi-isometric (bi-Lipschitz) parameterizations. Estimates of the quasi-isometry (bi-Lipschitz equivalence) constants in terms of positive and negative intrinsic curvature of the surface and in terms of the so-called “pocket depth” are discussed. Numerical calculations confirm the theoretical estimates. A method for constructing computational grids on surfaces of arbitrary connectivity is proposed. This method is based on a decomposition of the surface into a set of overlapping subdomains (chart). The size of a subdomain is chosen so that the equivalence constants for its parameterization are not large. The planar grid is mapped to the surface grid. Examples of the grids generated for complex-shaped bodies with nonsmooth surfaces are presented.
@article{ZVMMF_2005_45_8_a4,
     author = {V. A. Garanzha},
     title = {Bi-Lipschitz parameterizations of nonsmooth surfaces and surface grid generation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1383--1398},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a4/}
}
TY  - JOUR
AU  - V. A. Garanzha
TI  - Bi-Lipschitz parameterizations of nonsmooth surfaces and surface grid generation
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1383
EP  - 1398
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a4/
LA  - ru
ID  - ZVMMF_2005_45_8_a4
ER  - 
%0 Journal Article
%A V. A. Garanzha
%T Bi-Lipschitz parameterizations of nonsmooth surfaces and surface grid generation
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1383-1398
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a4/
%G ru
%F ZVMMF_2005_45_8_a4
V. A. Garanzha. Bi-Lipschitz parameterizations of nonsmooth surfaces and surface grid generation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1383-1398. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a4/

[1] Aleksandrov A. D., Zalgaller V. A., Dvumernye mnogoobraziya ogranichennoi krivizny, Tr. MIAN SSSR, 63, 1962 | MR | Zbl

[2] Reshetnyak Yu., “Two-dimensional manifolds of bounded curvature”, Geometry, v. IV, Non-regular Riemannian Geometry, Springer, Berlin, 1991, 3–165 | MR

[3] Bakelman I. Ya., “Chebyshevskie seti na mnogoobraziyakh ogranichennoi krivizny”, Tr. MIAN SSSR, 76, 1965, 124–129 | MR

[4] Bonk M., Lang U., “Bi-Lipschitz parameterization of surfaces”, Math. Ann., 327 (2003), 135–169 | DOI | MR | Zbl

[5] Belenkii A., Burago Yu., “Bilipshitsevy ekvivalentnye poverkhnosti Aleksandrova, I”, Algebra i analiz, 16:4 (2004), 24–40 | MR

[6] Burago Yu., Bi-Lipschitz equivalent Alexandrov surfaces, II, 2004, arXiv: math.DG/0409343 | MR

[7] Garanzha V. A., “Variational principles in grid generation and geometric modeling: theoretical justifications and open problems”, Numer. Linear Algebra with Applic., 11 (2004), 535–563 | DOI | MR | Zbl

[8] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[9] Godunov S. K., Gordienko V. M., Chumakov G. A., “Quasi-isometric parametrization of a curvilinear quadrangle and a metric of constant curvature”, Siberian Advances in Math., 5:2 (1995), 1–20 | MR

[10] Liseikin V. D., Grid generation methods, Springer, Berlin, 1999 | MR | Zbl

[11] Hormann K., Greiner G., “MIPS: an efficient global parameterization method”, Curve and Surface Design, Vanderbilt Univ. Press, Nashville, 2000, 163–170 | MR

[12] Ball J. M., “Convexity conditions and existence theorems in nonlinear elasticity”, Arch. Rat. Mech. and Analys., 63 (1977), 337–403 | DOI | MR | Zbl

[13] Eells J. E., Lemair L., “Another report on harmonic maps”, Bull. London Math. Soc., 20:86 (1988), 387–524 | MR

[14] Garanzha V. A., “Barernyi metod postroeniya kvaziizometricheskikh setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1685–1705 | MR | Zbl

[15] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1662–1684 | MR | Zbl

[16] Garanzha V. A., “Maximum norm optimization of quasi-isometric mappings”, Numer. Linear Algebra with Applic., 9:6–7 (2002), 493–510 | DOI | MR | Zbl

[17] Garanzha V. A., “Upravlenie metricheskimi svoistvami prostranstvennykh otobrazhenii”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 818–829 | MR | Zbl