Construction of a unified model for crystal and nearly crystal structures
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1359-1373 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Mathematical models (point systems) of the atom arrangement in solids are considered. A new approach to the design of such models is proposed. It is based on the operation of differentiation introduced for point systems. The differentiation operation is used to obtain a general mathematical criterion for distinguishing between various types of crystal and nearly crystal structures. Several theorems are proved that specify the constraints on point systems that lead to such structures.
@article{ZVMMF_2005_45_8_a2,
     author = {D. V. Kovalenko},
     title = {Construction of a unified model for crystal and nearly crystal structures},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1359--1373},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a2/}
}
TY  - JOUR
AU  - D. V. Kovalenko
TI  - Construction of a unified model for crystal and nearly crystal structures
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1359
EP  - 1373
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a2/
LA  - ru
ID  - ZVMMF_2005_45_8_a2
ER  - 
%0 Journal Article
%A D. V. Kovalenko
%T Construction of a unified model for crystal and nearly crystal structures
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1359-1373
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a2/
%G ru
%F ZVMMF_2005_45_8_a2
D. V. Kovalenko. Construction of a unified model for crystal and nearly crystal structures. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1359-1373. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a2/

[1] Galiulin R. V., “Sistemy Delone kak osnova geometrii diskretnogo mira”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 790–801 | MR | Zbl

[2] Shtogrin M. I., Pravilnye razbieniya prostranstv postoyannoi krivizny i ikh prilozheniya, Avtoref. dis. ...dokt. fiz.-matem. nauk, Matem. in-t RAN, M., 2000

[3] Gratia D., “Kvazikristally”, Uspekhi fiz. nauk, 156:2 (1988), 347–364

[4] Penrose R., “Pentaplexity”, Eureka, 39 (1978), 16–22

[5] Chen H. D. X., Kuo K. H., “New type of two-dimensional quasicrystal with twelvefold rotational symmetry”, Phys. Rev. Letts., 60 (1988), 1645–1648 | DOI

[6] Le Ty Kuok Tkhang, Piunikhin S. A., Sadov V. A., “Geometriya kvazikristallov”, Uspekhi matem. nauk, 48:1 (1993), 41–102 | MR

[7] Rokhsar D. S., Mermin N. D., Wright D. C., “Rudimentary quasicrystallography: the icosahedral and decagonal reciprocal lattices”, Phys. Rev., 35 (1987), 5487–5495 | DOI | MR

[8] Kovalenko D. V., “Matematicheskie modeli pochti kristallicheskikh soedinenii: novyi vzglyad”, Izv. Mezhdunar. akad. nauk vyssh. shkoly, 2003, no. 4(26), 195–209 | MR

[9] Grunbaum B., Shepard G. C., Tilings and patterns, W. H. Freeman and Co., New-York, 1986