Improved algorithm for unstructured quadrilateral meshing
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1506-1528 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A two-dimensional algorithm and a software code for unstructured quadrilateral meshing were developed. The algorithm is based on the Q-Morph algorithm proposed by S. Owen in 1998 and is classified as an indirect advancing front method for quadrilateral unstructured mesh generation. The meshing procedure involves a preliminary triangulation of the underlying domain followed by the transformation of the resulting triangles into quadrilateral cells. The input data are the coordinates of the boundary nodes. The algorithm performs automatically and does not modify the boundary nodes. The resulting mesh is all-quadrilateral if the boundary of the domain consists of an even number of edges. If the number of edges is odd, a triangular cell appears in the mesh. The code based on the algorithm can be exploited as an independent mesh-generating module.
@article{ZVMMF_2005_45_8_a13,
     author = {A. V. Skovpen'},
     title = {Improved algorithm for unstructured quadrilateral meshing},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1506--1528},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a13/}
}
TY  - JOUR
AU  - A. V. Skovpen'
TI  - Improved algorithm for unstructured quadrilateral meshing
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1506
EP  - 1528
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a13/
LA  - ru
ID  - ZVMMF_2005_45_8_a13
ER  - 
%0 Journal Article
%A A. V. Skovpen'
%T Improved algorithm for unstructured quadrilateral meshing
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1506-1528
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a13/
%G ru
%F ZVMMF_2005_45_8_a13
A. V. Skovpen'. Improved algorithm for unstructured quadrilateral meshing. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1506-1528. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a13/

[1] Blacker T. D., Stephenson M. B., “Paving: A new approach to automated quadrilateral mesh generation”, Internat. J. Numer. Meth. Engng., 32 (1991), 811–847 | DOI | Zbl

[2] Zhu J. Z., Zienkiewicz O. C., Hinton E., Wu J., “A new approach to the development of automatic quadrilateral mesh generation”, Internat. J. Numer. Meth. Engng., 32 (1991), 849–866 | DOI | Zbl

[3] Lo S. H., “A new mesh generation scheme for arbitrary planar domains”, Internat. J. Numer. Engng., 21 (1985), 1403–1426 | DOI | Zbl

[4] Ivanenko S. A., Adaptivno-garmonicheskie steki, VTs RAN, M., 1997

[5] Sidorov A. F., Ushakova O. V., Khairullina O. B., Variatsionnye metody postroeniya optimalnykh setok, UrO RAN, Ekaterinburg, 1997

[6] Garanzha V. A., “Barernyi metod postroeniya kvaziizometrichnykh setok”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 1685–1705 | MR | Zbl

[7] Liseikin V. D., Grid generation methods, Springer, New York, 1999 | MR | Zbl

[8] Belikov B. B., Vychislitelnyi kompleks “TRIANA” – generator setok treugolnykh konechnykh elementov v proizvolnykh ploskikh oblastyakh, GosFAP SSSR. P007705, 1984 | Zbl

[9] Baehmann P. L., Wittchen S. L., Shephard M. S. et al., “Robust geometrically-based, automatic two-dimensional mesh generation”, Internat. J. Numer. Meth. Engng., 24 (1987), 1043–1078 | DOI | Zbl

[10] Joe B., “Quadrilateral mesh generation in polygonal regions”, Comput. Aid. Des., 27 (1995), 209–222 | DOI | Zbl

[11] Talbert J. A., Parkinson A. R., “Development of an automatic, two dimensional finite elementmesh generator using quadrilateral elements and Bezier curve boundary definition”, Internat. J. Numer. Meth. Engng., 29 (1991), 1551–1567 | DOI

[12] Tam T. K. H., Armstrong C. G., “2D finite element mesh generation by medial axis subdivision”, Advances Engng Software, 13 (1991), 313–324 | DOI | MR | Zbl

[13] Schneiders R., “A grid-based algorithm for the generation of hexahedral element meshes”, Engng with Comput., 12 (1996), 168–177 | DOI

[14] Taghavi R., “Automatic, parallel and fault tolerant mesh generation from CAD on Cray Research Supercomputers”, Proc. CUG Conf. (Tours, France, 1994)

[15] Ives D., Geometric grid generation. Surface modeling, grid generation, and related issues in computational fluid dynamic (CFD) solutions, Proc. NASA-Conf., NASA CP-3291, Cleveland, OH, 1995

[16] Lo S. H., “Generating quadrilateral elements on plane and over curved surfaces”, Comput. Structures, 31 (1989), 421–426 | DOI

[17] Johnsotn B. P., Sullivan J. M., Jr. Kwasnik A., “Automatic conversion of triangular finite element meshes to quadrilateral elements”, Internat. J. Numer. Meth. Engng., 31 (1991), 67–84 | DOI

[18] Borouchaki H., Frey P., “Adaptive triangular-quadrilateral mesh generation”, Internat. J. Numer. Meth. Engng., 41 (1998), 915–934 | 3.0.CO;2-Y class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[19] Owen S. J., Staten M. L., Canann S. A., Sunil Saigal, “Advancing front quadrilateral meshing using triangle transformations”, 7th Internat. Mesh. Roundtable, 1998, 409–428

[20] Lee C. K., Lo S. A., “A new scheme for the generation of a graded quadrilateral mesh”, Comput. Structures, 52 (1994), 847–857 | DOI | Zbl

[21] Marcum D. L., Weatherill N. P., “Unstructured grid generation using iterative point insertion and local reconnection”, AIAA Journal, 33:9 (1995), 1619–1625 | DOI | Zbl

[22] Canann S. A., Muthukrishnan S. N., Phillips R. K., “Topological improvement procedures for quadrilateral finite element meshes”, MSC PDA, 1994 http://www.andrew.cmu.edu/user/sowen/mesh.html

[23] Jones N. L., Solid modelling of earth masses for applicaitons in geotechnical engineering, Doct. Dis., Univ. Texas at Austin, 1990

[24] Cannan S. A., Tristano J. R., Staten M. L., “An approach to combined Laplacian and optimization-based smothing for triangular, quadrilateral and quad-dominant meshes”, 7th Internat. Mesh. Roundtable (October, 1998), Sandia National Labs., 479–494