Meshless method based on radial basis functions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1498-1505 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A numerical method for partial differential equations based on radial basis functions (RBF) is described. In the method, spatial derivatives are approximated using RBF interpolants with local supports analogous to stencils used in finite-difference methods. The numerical results presented for various elasticity problems reveal that the method provides good accuracy and convergence. The method is also applied to problems with non-self-adjoint operators (like those in the Navier–Stokes equations).
@article{ZVMMF_2005_45_8_a12,
     author = {A. I. Tolstykh and D. A. Shirobokov},
     title = {Meshless method based on radial basis functions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1498--1505},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a12/}
}
TY  - JOUR
AU  - A. I. Tolstykh
AU  - D. A. Shirobokov
TI  - Meshless method based on radial basis functions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1498
EP  - 1505
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a12/
LA  - ru
ID  - ZVMMF_2005_45_8_a12
ER  - 
%0 Journal Article
%A A. I. Tolstykh
%A D. A. Shirobokov
%T Meshless method based on radial basis functions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1498-1505
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a12/
%G ru
%F ZVMMF_2005_45_8_a12
A. I. Tolstykh; D. A. Shirobokov. Meshless method based on radial basis functions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1498-1505. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a12/

[1] Dyachenko V. F., “Ob odnom novom metode chislennogo resheniya nestatsionarnykh zadach gazovoi dinamiki s dvumya prostranstvennymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 5:4 (1965), 680–688 | MR

[2] Belotserkovskii O. M., Kholodov A. S., “O mazhorantnykh skhemakh na nestrukturirovannykh khaoticheskikh setkakh v prostranstve neopredelennykh koeffitsientov”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1802–1820 | MR

[3] Belytchko T., Krongaus Y., Organ D. et al., “Meshless methods: An overview and recent developments”, Comput. Meth. Appl. Engng., 139 (1996), 3–47 | DOI

[4] Kansa E. J., Carlson R. E., “Radial basis function: a class of grid-free scattered data approximations”, Comput. Fluid Dynamics J., 3 (1995), 479–496

[5] Wong S. M., Hon Y. C., Li T. S. et al., “Multizone decomposition of time dependent problems using the multiquadric scheme”, Comput. Math. Appl., 4 (1999), 389–396

[6] Buhmann M. D., “Radial functions on compact support”, Proc. Edinburg Math. Soc., 41 (1998), 33–44 | DOI | MR

[7] Tolstykh A. I., “On using RBF-based differencing formulas for unstructured and mixed structured-unstructured grid calculations”, Proc. 16th IMACS World Congress (CD), Lausanne, 2002

[8] Babuska I., Scapolla T., “Benchmark computation and performance evaluation for a rhombic plate bending problem”, Internat. J. Numer. Meth. Engng., 28 (1989), 155–179 | DOI | MR | Zbl

[9] Tolstykh A. I., High accuracy non-centered compact difference schemes for fluid dynamics applications, World Scient., Singapore, 1994 | Zbl