@article{ZVMMF_2005_45_8_a1,
author = {D. I. Ivanov and I. E. Ivanov and I. A. Kryukov},
title = {Hamilton{\textendash}Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1345--1358},
year = {2005},
volume = {45},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/}
}
TY - JOUR AU - D. I. Ivanov AU - I. E. Ivanov AU - I. A. Kryukov TI - Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1345 EP - 1358 VL - 45 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/ LA - ru ID - ZVMMF_2005_45_8_a1 ER -
%0 Journal Article %A D. I. Ivanov %A I. E. Ivanov %A I. A. Kryukov %T Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1345-1358 %V 45 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/ %G ru %F ZVMMF_2005_45_8_a1
D. I. Ivanov; I. E. Ivanov; I. A. Kryukov. Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1345-1358. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/
[1] Preparata F., Sheimos M., Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989 | MR | Zbl
[2] Sethian J. A., Level set method and fast marching methods, University Press, Cambridge, 1999 | MR | Zbl
[3] Fares E., Schroder W., “A differential equation for approximate wall distance”, Int. J. Numer. Meth. Fluid, 39:8 (2002), 743–762 | DOI | MR | Zbl
[4] Tucker P. G., “Differential equation-based wall distance computation for DES and RANS”, J. Comput. Phys., 190:1 (2003), 229–248 | DOI | Zbl
[5] Kim S., “An $\mathrm{O(n)}$ level set method for Eikonal equations”, SIAM J. Sci. Comput., 22:6 (2001), 2178–2193 | DOI | MR | Zbl
[6] Tsai Y. R., “Rapid and accurate computation of the distance function using grids”, J. Comput. Phys., 178:1 (2002), 175–195 | DOI | MR | Zbl
[7] Fedkiw R. P., Shapiro G., Shu C.-W., “Shock capturing Level sets and PDE based methods in computer vision and image processing: review of Osher's contributions”, J. Comp. Phys., 185:2 (2003), 309–343 | DOI | MR
[8] Sethian J. A., Vladimirsky A., “Fast methods for Eikonal and related Hamilton-Jacobi equations on structured meshes”, PNAS, 97:11 (2000), 5699–5703 | DOI | MR | Zbl
[9] Osher S., Fedkiw R. P., “Level set method. An overview and some resent results”, J. Comput. Phys., 169:2 (2001), 463–501 | DOI | MR
[10] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Fizmatgiz, M.–L., 1949
[11] Godunov S. K., Uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1971 | MR
[12] Benamou J. D., “Big ray tracing: Multivalue travel time field computation using viscosity solutions of the eikonal equation”, J. Comput. Phys., 128:2 (1996), 463–474 | DOI | MR | Zbl
[13] Kim S., Cook R., “3D traveltime computation using second-order ENO scheme”, Geophisics, 64 (1999), 1867–1876 | DOI
[14] Godunov C. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sbornik, 47:3 (1959), 271–306 | MR | Zbl
[15] Sethian J. A., Popovici A. M., “3D traveltime computation using the fast marching method”, Geophisics, 64:2 (1999), 516–523 | DOI | MR
[16] Ferretti F. M., “Semi Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods”, J. Comput. Phys., 175:2 (2002), 559–575 | DOI | MR | Zbl
[17] Tsai Y. R., Cheng L.-T., Osher S., Zhao H. K., “Fast sweeping algorithms for a class of Hamilton-Jacobi equation”, SIAM J. Numerical Analys., 41:2 (2003), 673–694 | DOI | MR | Zbl
[18] Bogomolov K. L., Tishkin V. F., “Yacheiki Dirikhle v metrike kratchaishego puti”, Matem. modelirovanie, 15:5 (2003), 71–79 | MR | Zbl