Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1345-1358 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two important applied geometry problems are solved numerically. One is that of determining the nearest boundary distance from an arbitrary point in a domain. The other is that of determining (in a shortest-path metric) the distance between two points with the obstacles boundaries traversed inside the domain. These problems are solved by the time relaxation method as applied to a nonlinear Hamilton–Jacobi equation. Two major approaches are taken. In one approach, an equation with elliptic operators on the right-hand side is derived by changing the variables in the eikonal equation with viscous terms. In the other approach, first- and second-order monotone Godunov schemes are constructed taking into account the hyperbolicity of the nonlinear eikonal equation. One- and two-dimensional problems are solved to demonstrate the performance of the developed numerical algorithms and to examine their properties. Application problems are solved as examples.
@article{ZVMMF_2005_45_8_a1,
     author = {D. I. Ivanov and I. E. Ivanov and I. A. Kryukov},
     title = {Hamilton{\textendash}Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1345--1358},
     year = {2005},
     volume = {45},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/}
}
TY  - JOUR
AU  - D. I. Ivanov
AU  - I. E. Ivanov
AU  - I. A. Kryukov
TI  - Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1345
EP  - 1358
VL  - 45
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/
LA  - ru
ID  - ZVMMF_2005_45_8_a1
ER  - 
%0 Journal Article
%A D. I. Ivanov
%A I. E. Ivanov
%A I. A. Kryukov
%T Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1345-1358
%V 45
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/
%G ru
%F ZVMMF_2005_45_8_a1
D. I. Ivanov; I. E. Ivanov; I. A. Kryukov. Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1345-1358. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/

[1] Preparata F., Sheimos M., Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989 | MR | Zbl

[2] Sethian J. A., Level set method and fast marching methods, University Press, Cambridge, 1999 | MR | Zbl

[3] Fares E., Schroder W., “A differential equation for approximate wall distance”, Int. J. Numer. Meth. Fluid, 39:8 (2002), 743–762 | DOI | MR | Zbl

[4] Tucker P. G., “Differential equation-based wall distance computation for DES and RANS”, J. Comput. Phys., 190:1 (2003), 229–248 | DOI | Zbl

[5] Kim S., “An $\mathrm{O(n)}$ level set method for Eikonal equations”, SIAM J. Sci. Comput., 22:6 (2001), 2178–2193 | DOI | MR | Zbl

[6] Tsai Y. R., “Rapid and accurate computation of the distance function using grids”, J. Comput. Phys., 178:1 (2002), 175–195 | DOI | MR | Zbl

[7] Fedkiw R. P., Shapiro G., Shu C.-W., “Shock capturing Level sets and PDE based methods in computer vision and image processing: review of Osher's contributions”, J. Comp. Phys., 185:2 (2003), 309–343 | DOI | MR

[8] Sethian J. A., Vladimirsky A., “Fast methods for Eikonal and related Hamilton-Jacobi equations on structured meshes”, PNAS, 97:11 (2000), 5699–5703 | DOI | MR | Zbl

[9] Osher S., Fedkiw R. P., “Level set method. An overview and some resent results”, J. Comput. Phys., 169:2 (2001), 463–501 | DOI | MR

[10] Petrovskii I. G., Lektsii po teorii obyknovennykh differentsialnykh uravnenii, Fizmatgiz, M.–L., 1949

[11] Godunov S. K., Uravneniya matematicheskoi fiziki, Fizmatgiz, M., 1971 | MR

[12] Benamou J. D., “Big ray tracing: Multivalue travel time field computation using viscosity solutions of the eikonal equation”, J. Comput. Phys., 128:2 (1996), 463–474 | DOI | MR | Zbl

[13] Kim S., Cook R., “3D traveltime computation using second-order ENO scheme”, Geophisics, 64 (1999), 1867–1876 | DOI

[14] Godunov C. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sbornik, 47:3 (1959), 271–306 | MR | Zbl

[15] Sethian J. A., Popovici A. M., “3D traveltime computation using the fast marching method”, Geophisics, 64:2 (1999), 516–523 | DOI | MR

[16] Ferretti F. M., “Semi Lagrangian schemes for Hamilton-Jacobi equations, discrete representation formulae and Godunov methods”, J. Comput. Phys., 175:2 (2002), 559–575 | DOI | MR | Zbl

[17] Tsai Y. R., Cheng L.-T., Osher S., Zhao H. K., “Fast sweeping algorithms for a class of Hamilton-Jacobi equation”, SIAM J. Numerical Analys., 41:2 (2003), 673–694 | DOI | MR | Zbl

[18] Bogomolov K. L., Tishkin V. F., “Yacheiki Dirikhle v metrike kratchaishego puti”, Matem. modelirovanie, 15:5 (2003), 71–79 | MR | Zbl