Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1345-1358
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Two important applied geometry problems are solved numerically. One is that of determining the nearest boundary distance from an arbitrary point in a domain. The other is that of determining (in a shortest-path metric) the distance between two points with the obstacles boundaries traversed inside the domain. These problems are solved by the time relaxation method as applied to a nonlinear Hamilton–Jacobi equation. Two major approaches are taken. In one approach, an equation with elliptic operators on the right-hand side is derived by changing the variables in the eikonal equation with viscous terms. In the other approach, first- and second-order monotone Godunov schemes are constructed taking into account the hyperbolicity of the nonlinear eikonal equation. One- and two-dimensional problems are solved to demonstrate the performance of the developed numerical algorithms and to examine their properties. Application problems are solved as examples.
            
            
            
          
        
      @article{ZVMMF_2005_45_8_a1,
     author = {D. I. Ivanov and I. E. Ivanov and I. A. Kryukov},
     title = {Hamilton{\textendash}Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1345--1358},
     publisher = {mathdoc},
     volume = {45},
     number = {8},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/}
}
                      
                      
                    TY - JOUR AU - D. I. Ivanov AU - I. E. Ivanov AU - I. A. Kryukov TI - Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1345 EP - 1358 VL - 45 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/ LA - ru ID - ZVMMF_2005_45_8_a1 ER -
%0 Journal Article %A D. I. Ivanov %A I. E. Ivanov %A I. A. Kryukov %T Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1345-1358 %V 45 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/ %G ru %F ZVMMF_2005_45_8_a1
D. I. Ivanov; I. E. Ivanov; I. A. Kryukov. Hamilton–Jacobi equation-based algorithms for approximate solutions to certain problems in applied geometry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 8, pp. 1345-1358. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_8_a1/
