The maximum principle for the transport equation in the case of Compton scattering
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1226-1236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of solutions to the transport equation describing the Compton scattering of photons is investigated. The maximum and minimum principles are proved for this equation. According to them, the radiation density within a region cannot be greater than the maximum positive value of the incident radiation density and cannot be less than its minimum negative value. Furthermore, conditions under which a solution to the equation under consideration is constant are presented. The results of this work are obtained under the assumption that the properties of the medium change continuously with respect to the spatial and energy variables.
@article{ZVMMF_2005_45_7_a8,
     author = {D. S. Konovalova},
     title = {The maximum principle for the transport equation in the case of {Compton} scattering},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1226--1236},
     year = {2005},
     volume = {45},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a8/}
}
TY  - JOUR
AU  - D. S. Konovalova
TI  - The maximum principle for the transport equation in the case of Compton scattering
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1226
EP  - 1236
VL  - 45
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a8/
LA  - ru
ID  - ZVMMF_2005_45_7_a8
ER  - 
%0 Journal Article
%A D. S. Konovalova
%T The maximum principle for the transport equation in the case of Compton scattering
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1226-1236
%V 45
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a8/
%G ru
%F ZVMMF_2005_45_7_a8
D. S. Konovalova. The maximum principle for the transport equation in the case of Compton scattering. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1226-1236. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a8/

[1] Anikonov D. S., Konovalova D. S., “Kineticheskoe uravnenie perenosa dlya sluchaya komptonovskogo rasseyaniya”, Sibirskii matem. zhurnal, 43:5 (2002), 987–1001 | MR | Zbl

[2] Anikonov D. S., Konovalova D. S., “Komptonovskii effekt v teorii perenosa izlucheniya”, Dokl. RAN, 397 (2004), 1–4

[3] Leipunskii O. I., Novozhilov B. V., Sakharov V. N., Rasprostranenie gamma-kvantov v veschestve, Fizmatgiz, M., 1960

[4] Fano U., Spenser L., Berger M., Perenos gamma-izlucheniya, Gos. izd-vo po atomnoi nauke i tekhn., M., 1963

[5] Devison B., Teoriya perenosa neitronov, Atomizdat, M., 1960

[6] Marchuk G. I., Lebedev V. I., Chislennye metody v teorii perenosa neitronov, Nauka, M., 1976 | Zbl

[7] Germogenova T. A., Lokalnye svoistva reshenii uravneniya perenosa, Nauka, M., 1986 | MR | Zbl

[8] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000