A posteriori error estimation of a finite difference solution based on adjoint equations and differential representations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1213-1225 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical results obtained for the parabolized Navier–Stokes equations are used to show that the error in computed flow parameters caused by the truncation error of the underlying finite difference scheme can be evaluated using adjoint equations. If the local truncation error is determined in terms of the Lagrange remainder of a Taylor series, the numerical results can be improved and the remaining error can be estimated from above.
@article{ZVMMF_2005_45_7_a7,
     author = {A. K. Alekseev},
     title = {A posteriori error estimation of a finite difference solution based on adjoint equations and differential representations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1213--1225},
     year = {2005},
     volume = {45},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a7/}
}
TY  - JOUR
AU  - A. K. Alekseev
TI  - A posteriori error estimation of a finite difference solution based on adjoint equations and differential representations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1213
EP  - 1225
VL  - 45
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a7/
LA  - ru
ID  - ZVMMF_2005_45_7_a7
ER  - 
%0 Journal Article
%A A. K. Alekseev
%T A posteriori error estimation of a finite difference solution based on adjoint equations and differential representations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1213-1225
%V 45
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a7/
%G ru
%F ZVMMF_2005_45_7_a7
A. K. Alekseev. A posteriori error estimation of a finite difference solution based on adjoint equations and differential representations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1213-1225. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a7/

[1] Oden J. T., Prudhomme S., “Estimation of modeling error in computational mechanics”, J. Comput. Phys., 1 (2002), 496–515 | DOI | MR

[2] Prudhomme S., Oden J. T., “On goal-oriented error estimation for elliptic problems: Application to the control of pointwise errors”, Comput. Meth. in Appl. Mech. and Engng., 176 (1999), 313–331 | DOI | MR | Zbl

[3] Johnson C., “On computability and error control in CFD”, Internat. J. Numer. Meth. in Fluids, 20 (1995), 777–788 | DOI | MR | Zbl

[4] Hartmann R., Houston P., “Goal-oriented a posteriori error estimation for compressible fluid flows”, Numer. Math. and Advanced Applic., Springer, New York, 2003, 775–784 | MR | Zbl

[5] Venditti D., Darmofal D., “Grid adaptation for functional outputs: Application to two-dimensional inviscid flow”, J. Comput. Phys., 176 (2002), 40–69 | DOI | MR | Zbl

[6] Giles M. B., “On adjoint equations for error analysis and optimal grid adaptation in CFD”, Comput. Future, v. II, Advances and Prospects in Comput. Aerodynamics, Wiley, New York, 1998 | MR

[7] Park M. A., Adjoint-based, three-dimensional error prediction and grid adaptation, AIAA Paper 2002-3286, 2002

[8] Giles M. B., Suli E., “Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality”, Acta Numer., 2002, 145–206 | MR

[9] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[10] Roache P. J., “Quantification of uncertainty in computational fluid dynamics”, Ann. Rev. Fluid Mech., 29 (1997), 123–160 | DOI | MR

[11] Roy C. J., “Grid convergence error analysis for mixed-order numerical schemes”, AIAA Journal, 41:4 (2003), 595–604 | DOI

[12] Carpenter M. H., Casper J. H., “Accuracy of shock capturing in two spatial dimensions”, AIAA Journal, 37:9 (1999), 1072–1079 | DOI

[13] Yamaleev N. K., Carpenter M. H., On accuracy of adaptive grid methods for captured shocks, NASA/TM-2002-211415, 37 pp.

[14] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR

[15] Alekseev A. K., “Kontrol pogreshnosti konechno-raznostnogo resheniya uravneniya teploprovodnosti s pomoschyu sopryazhennogo uravneniya”, Inzh.-fiz. zhurnal, 77:1 (2004), 146–151

[16] Shokin Yu. I., Yanenko H. H., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1985 | Zbl

[17] Alekseev A. K., “K opredeleniyu prostranstvennogo raspredeleniya parametrov na vkhodnoi granitse sverkhzvukovogo potoka po izmereniyam v pole techeniya”, Matem. modelirovanie, 11:12 (1999), 33–44

[18] Alekseev A. K., “K resheniyu odnoi obratnoi retrospektivnoi zadachi konvektsii”, Teplofiz. vysokikh t-r, 37:4 (1999), 582–588

[19] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[20] Rouch P., Vychislitelnaya gidrodinamika, Mir, M., 1980 | Zbl