@article{ZVMMF_2005_45_7_a6,
author = {G. I. Shishkin},
title = {Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1196--1212},
year = {2005},
volume = {45},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/}
}
TY - JOUR AU - G. I. Shishkin TI - Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1196 EP - 1212 VL - 45 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/ LA - ru ID - ZVMMF_2005_45_7_a6 ER -
%0 Journal Article %A G. I. Shishkin %T Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1196-1212 %V 45 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/ %G ru %F ZVMMF_2005_45_7_a6
G. I. Shishkin. Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1196-1212. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/
[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl
[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248
[3] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR
[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Scient., Singapore, 1996 | MR
[6] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, Springer, Berlin, 1996 | MR
[7] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall/ CRC Press, Boca Raton, Florida, 2000 | MR | Zbl
[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[9] Shishkin G. I., “Setochnye approksimatsii s uluchshennoi skorostyu skhodimosti dlya singulyarno vozmuschennykh ellipticheskikh uravnenii v oblastyakh s kharakteristicheskimi granitsami”, Sibirskii zhurnal vychisl. matem. (SO RAN. Novosibirsk), 5:1 (2002), 71–92 | Zbl
[10] Clavero C., Gracia J. L., Lisbona F., Shishkin G. I., “A robust method of improved order for convection-diffusion problems in a domain with characteristic boundaries”, Z. angew. Math. und Mech., 82:9 (2002), 631–647 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[11] Li J., “Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems”, Appl. Numer. Math., 36 (2001), 129–154 | DOI | MR | Zbl
[12] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. Matem. in-ta AN SSSR, 77, M., 1965, 89–112 | Zbl
[13] Han H., Kellogg R. B., “Differentiability properties of solutions of the equation $-\varepsilon^2\Delta u+ru=f(x, y)$ in a square”, SIAM J. Math. Analys., 21:2 (1990), 394–408 | DOI | MR | Zbl
[14] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR
[15] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR
[16] Hemker P. W., Shishkin G. I., Shishkina L. P., “The use of defect correction for the solution of parabolic singular perturbation problems”, Z. angew. Math. und Mech., 77:1 (1997), 59–74 | DOI | MR | Zbl
[17] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-Uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Analys., 20:1 (2000), 99–121 | DOI | MR | Zbl
[18] Hemker P. W., Shishkin G. I., Shishkina L. P., “The numerical solution of a Neumann problem for parabolic singular perturbed equations with high-order time-accuracy”, Recent Advances in Numerical Methods and Applications II (Sofia, 1998), World Scient., Singapore, 1999, 27–39 | MR | Zbl
[19] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problems with convective terms”, Soviet J. Numer. Analys. Math. Modelling, 5:2 (1990), 173–187 | DOI | MR | Zbl
[20] Emelyanov K. B., “Raznostnaya skhema dlya trekhmernogo ellipticheskogo uravneniya s malym parametrom pri starshikh proizvodnykh”, Kraevye zadachi dlya ur-nii matem. fiz., UNTs AN SSSR, Sverdlovsk, 1973, 30–42