Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1196-1212 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a rectangle, the Dirichlet problem for singularly perturbed elliptic equations with convection terms is considered in the case when the characteristics of the reduced equations are parallel to the rectangle sides. The higher order derivatives in the equations are multiplied by a perturbation parameter $\tilde\varepsilon=\varepsilon^2$ that can take arbitrary values in the half-open interval $(0,1]$. For such convection–diffusion problems, the order of the $\varepsilon$-uniform convergence (in the maximum norm) of the well-known special schemes on piecewise uniform grids is not higher than unity (with respect to the variable along the flow). In this paper, a scheme on piecewise uniform grids is constructed that converges $\varepsilon$-uniformly at the rate of $O(N^{-2}\ln^2N)$, where $N$ specifies the number of mesh points with respect to each variable. When is not very small (compared to the effective mesh size in the direction of the convective flow) this scheme approximates the equation using central difference derivatives. For small $\tilde\varepsilon$, a domain decomposition method is used; more precisely, the problem is considered separately in a neighborhood of the outflow part of the domain boundary and outside this neighborhood. In the neighborhood of the outflow part of the boundary, central difference derivatives are used. Outside this neighborhood, the solution is decomposed. The regular part of the solution and the parabolic boundary layer are found by solving the corresponding problems, in which the convective term is approximated by the upwind difference derivative. The order of approximation of the convective term is improved due to a correction of the defect.
@article{ZVMMF_2005_45_7_a6,
     author = {G. I. Shishkin},
     title = {Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1196--1212},
     year = {2005},
     volume = {45},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
TI  - Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2005
SP  - 1196
EP  - 1212
VL  - 45
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/
LA  - ru
ID  - ZVMMF_2005_45_7_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%T Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2005
%P 1196-1212
%V 45
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/
%G ru
%F ZVMMF_2005_45_7_a6
G. I. Shishkin. Grid approximation of the domain and solution decomposition method with improved convergence rate for singularly perturbed elliptic equations in domains with characteristic boundaries. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1196-1212. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a6/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zh. vychisl. matem. i matem. fiz., 9:4 (1969), 841–859 | Zbl

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matem. zametki, 6:2 (1969), 237–248

[3] Dulan E., Miller Dzh., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[4] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems: error estimates in the maximum norm for linear problems in one and two dimensions, World Scient., Singapore, 1996 | MR

[6] Roos H.-G., Stynes M., Tobiska L., Numerical methods for singularly perturbed differential equations. Convection-diffusion and flow problems, Springer, Berlin, 1996 | MR

[7] Farrell P. A., Hegarty A. F., Miller J. J. H., O'Riordan E., Shishkin G. I., Robust computational techniques for boundary layers, Chapman Hall/ CRC Press, Boca Raton, Florida, 2000 | MR | Zbl

[8] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[9] Shishkin G. I., “Setochnye approksimatsii s uluchshennoi skorostyu skhodimosti dlya singulyarno vozmuschennykh ellipticheskikh uravnenii v oblastyakh s kharakteristicheskimi granitsami”, Sibirskii zhurnal vychisl. matem. (SO RAN. Novosibirsk), 5:1 (2002), 71–92 | Zbl

[10] Clavero C., Gracia J. L., Lisbona F., Shishkin G. I., “A robust method of improved order for convection-diffusion problems in a domain with characteristic boundaries”, Z. angew. Math. und Mech., 82:9 (2002), 631–647 | 3.0.CO;2-1 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Li J., “Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems”, Appl. Numer. Math., 36 (2001), 129–154 | DOI | MR | Zbl

[12] Volkov E. A., “O differentsialnykh svoistvakh reshenii kraevykh zadach dlya uravnenii Laplasa i Puassona na pryamougolnike”, Tr. Matem. in-ta AN SSSR, 77, M., 1965, 89–112 | Zbl

[13] Han H., Kellogg R. B., “Differentiability properties of solutions of the equation $-\varepsilon^2\Delta u+ru=f(x, y)$ in a square”, SIAM J. Math. Analys., 21:2 (1990), 394–408 | DOI | MR | Zbl

[14] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR

[15] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[16] Hemker P. W., Shishkin G. I., Shishkina L. P., “The use of defect correction for the solution of parabolic singular perturbation problems”, Z. angew. Math. und Mech., 77:1 (1997), 59–74 | DOI | MR | Zbl

[17] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-Uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Analys., 20:1 (2000), 99–121 | DOI | MR | Zbl

[18] Hemker P. W., Shishkin G. I., Shishkina L. P., “The numerical solution of a Neumann problem for parabolic singular perturbed equations with high-order time-accuracy”, Recent Advances in Numerical Methods and Applications II (Sofia, 1998), World Scient., Singapore, 1999, 27–39 | MR | Zbl

[19] Shishkin G. I., “Grid approximation of singularly perturbed boundary value problems with convective terms”, Soviet J. Numer. Analys. Math. Modelling, 5:2 (1990), 173–187 | DOI | MR | Zbl

[20] Emelyanov K. B., “Raznostnaya skhema dlya trekhmernogo ellipticheskogo uravneniya s malym parametrom pri starshikh proizvodnykh”, Kraevye zadachi dlya ur-nii matem. fiz., UNTs AN SSSR, Sverdlovsk, 1973, 30–42