Optimal control of the spread of an infectious disease with allowance for an incubation period
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1174-1180
Cet article a éte moissonné depuis la source Math-Net.Ru
The optimal control of an epidemic disease in n social groups with allowance for an incubation period is considered. The control is implemented through vaccination and quarantine. Models described by integro-differential and delay differential equations are compared. The dependence of an optimal solution on the parameters of the problem is analyzed.
@article{ZVMMF_2005_45_7_a3,
author = {E. Andreeva and N. A. Semykina},
title = {Optimal control of the spread of an infectious disease with allowance for an incubation period},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1174--1180},
year = {2005},
volume = {45},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a3/}
}
TY - JOUR AU - E. Andreeva AU - N. A. Semykina TI - Optimal control of the spread of an infectious disease with allowance for an incubation period JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2005 SP - 1174 EP - 1180 VL - 45 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a3/ LA - ru ID - ZVMMF_2005_45_7_a3 ER -
%0 Journal Article %A E. Andreeva %A N. A. Semykina %T Optimal control of the spread of an infectious disease with allowance for an incubation period %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2005 %P 1174-1180 %V 45 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a3/ %G ru %F ZVMMF_2005_45_7_a3
E. Andreeva; N. A. Semykina. Optimal control of the spread of an infectious disease with allowance for an incubation period. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 45 (2005) no. 7, pp. 1174-1180. http://geodesic.mathdoc.fr/item/ZVMMF_2005_45_7_a3/
[1] Andreeva E. A., Optimalnoe upravlenie dinamicheskimi sistemami, TvGU, Tver, 1999
[2] Behncke H., “The control of deterministic epidemics”, Math. Appl. Sci., 3 (1993), 298–311